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Introduction

Suicide chess (or antichess) is a variant of chess where each player’s goal is to lose all their pieces. The rules
are the same as regular chess except:

1. Capture must be played if any captures are possible.

2. Kings are treated as normal pieces (no checks, checkmates, castling and pawns can promote to king)

3. Stalemates are a win for the stalemated player.

Our program attempts to find the winning move in positions of antichess. Like regular chess, antichess is
a 2-player zero sum game, so it can be solved using the minimax algorithm. Our algorithm creates a tree
representation of the game states, then runs minimax with increasing depth until it finds a winning position,
or reaches a depth limit (which we set to 10). The end goal would be to give the program a set of positions
that have a reasonably small number of pieces and see if it is possible to win the game in ≤ 5 moves (to win
is to get rid of all your pieces, or get stalemated).

Sample Game

Below is an example game where it is possible for white to win in 4 moves. There is no immediate way to
get rid of the knight, but if you push the B pawn up, you force black’s A pawn to capture it, after which you
can push your C pawn up 2 squares, forcing black to capture, then your king up, forcing black to capture
again. Finally play your knight to E2 and force it to be captured, winning the game.

Figure 1: Winning sequence: 1.b5 axb5 2.c4 bxc4 3.Kd3 cxd3 4.Ne2 dxe2#

This position can be solved in around 0.07 seconds. More complex positions that have many pieces on
the board will require a large search depth to solve, and the minimax algorithm’s run time is exponential in
depth, so it wasn’t very practical to keep searching past 5 moves.

Code

Overview

The bulk of the code that we used to for the game logic came from the chesshs library on hackage, writ-
ten by Arno van Lumig. The library code is in Chess.hs, Chess/Chess.FEN and Chess/Chess.PGN. The
chess engine was modified to incorporate the antichess variant’s ruleset. And the functions forcedMove

and movesFrom were added in order to efficiently implement our algorithm. movesFrom is a faster re-
implementation of the default move generator.

main.hs becomes the main executable. After compiling, run
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./main <positions file> n

to evaluate the first n positions in the file.
play.hs is a second executable that allows the user to interactively play a game of suicide chess. play

can be run without args or with a fen string as a parameter to create the starting board (sample fen boards
can be found in the ’positions’ document). Inputing ’best’ will run our algorithm with a search deep of 3
moves, and will print out the expectation of winning, positive for white and negative for black, along with
the best move.

Minimax.hs contains the tree representation for the minimax game problem. The core data structure is a
MinimaxTree which is a tree where every node contains a board object, representing the gamestate. Leaves,
called ’Final’, are final, game over, states which occur when a player has no playable moves. ’Root’ is the
starting position and all other nodes are ’Partial’ data objects. Our algorithms lazily traverse MinimaxTree
to find the best moves. score is the static heuristic evaluation function that gives an estimate of how good
the current position is. negaMax is the main algorithm to compute the best scoring move.

miniMaxWithMoves runs negaMax on all of the children boards from the current position so that it can
recover the best move rather than just return the score. itDeep is an iterative deepening function that calls
miniMaxWithMoves with increasing depth until it finds a winning move (or passes a depth limit of 5 moves).

NOTE: Our algorithm actually only solves the boards approximately. We cannot realistically search the
entire tree because the branching factor is too large, so we use the evaluation heuristic and only search the
5 best candidate moves at each depth level after the first one. The best moves tend to be ones that give
your pieces away, and for all of the positions that we manually tested, our algorithm does find the true best
answer (confirmed by the Stockfish engine on lichess.org).

Code Listing

Chess.hs: forcedCapture

forcedCapture : : Color −> Board −> [ ( ( Int , Int ) , ( Int , Int ) ) ]
forcedCapture c l r brd = f i l t e r canCapture p a i r s

where
p i e c e s = p iece sOf c l r brd
o the rP i e c e s = piece sOf ( otherColor c l r ) brd
p a i r s = [ ( p1 , p2 ) | p1 <− p i ece s , p2 <− o the rP i e c e s ]
canCapture ( ( x1 , y1 ) , ( x2 , y2 ) ) = okMove x1 y1 x2 y2 brd

Chess.hs: movesFrom

movesFrom : : Int −> Int −> Board −> [ ( Int , Int , Int , Int ) ]
movesFrom x y brd
| isNothing p i e c e = [ ]
| c l r ownpiece /= turn brd = [ ]
| otherwise = movesFrom ’ ownpiece

where
p i e c e = pieceAt x y brd
ownpiece = fromJust p i e c e
owncolor = c l r ownpiece

mvFi lter mvs
| null r i g h t

| | not ( opponentAt x2 y2 ) = l e f t
| otherwise = head r i g h t : [ ]
where

( l e f t , r i g h t ) = span (\ ( x2 , y2 ) −>
isNothing $ pieceAt x2 y2 brd ) mvs

( x2 , y2 ) = head r i g h t

opponentAt x2 y2 = isJust t a r g e t &&
c l r ( fromJust t a r g e t ) /= owncolor

where
t a r g e t = pieceAt x2 y2 brd

rookFrom xx yy =
( mvFi lter $ zip [ xx−1, xx−2 . . 0 ] [ yy , yy . . ] ) ++
( mvFi lter $ zip [ xx+1, xx + 2 . . 7 ] [ yy , yy . . ] ) ++
( mvFi lter $ zip [ xx , xx . . ] [ yy−1, yy−2 . . 0 ] ) ++
( mvFi lter $ zip [ xx , xx . . ] [ yy+1, yy + 2 . . 7 ] )

bishopFrom xx yy =
( mvFi lter $ zip [ xx−1, xx−2 . . 0 ] [ yy−1, yy−2 . . 0 ] ) ++
( mvFi lter $ zip [ xx+1, xx + 2 . . 7 ] [ yy+1, yy + 2 . . 7 ] ) ++
( mvFi lter $ zip [ xx+1, xx + 2 . . 7 ] [ yy−1, yy−2 . . 0 ] ) ++
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( mvFi lter $ zip [ xx−1, xx−2 . . 0 ] [ yy+1, yy + 2 . . 7 ] )

inBounds x2 y2 = 0 <= x2 && x2 < 8 && 0 <= y2 && y2 < 8

movesFrom ’ ( Piece Rook) = rookFrom x y
movesFrom ’ ( Piece Bishop ) = bishopFrom x y
movesFrom ’ ( Piece Queen ) = rookFrom x y ++

bishopFrom x y
movesFrom ’ ( Piece Knight )
| null caps = empty
| otherwise = caps

where
l o c s = f i l t e r (uncurry inBounds ) [

( x+2, y+1) , ( x+1, y+2) , (x−2, y+1) ,
(x−1, y+2) , ( x+2, y−1) , ( x+1, y−2) ,
(x−2, y−1) , (x−1, y−2) ]

caps = f i l t e r (\ ( x2 , y2 ) −> opponentAt x2 y2 ) l o c s
empty = f i l t e r (\ ( x2 , y2 ) −> isNothing $

pieceAt x2 y2 brd ) l o c s

movesFrom ’ ( Piece King )
| null caps = empty
| otherwise = caps

where
l o c s = f i l t e r (uncurry inBounds ) [

( x+1, y+1) , (x , y+1) , (x−1, y+1) ,
( x+1, y ) , (x−1, y ) , ( x+1, y−1) ,
(x , y−1) , (x−1, y−1)]

caps = f i l t e r (\ ( x2 , y2 ) −> opponentAt x2 y2 ) l o c s
empty = f i l t e r (\ ( x2 , y2 ) −> isNothing $

pieceAt x2 y2 brd ) l o c s

movesFrom ’ ( Piece White Pawn)
| not $ null captures = captures
| y == 7 | | isJust ( pieceAt x ( y + 1) brd ) = [ ]
| y == 1 && isNothing ( pieceAt x ( y + 2) brd ) =

[ ( x , y + 1) , (x , y + 2 ) ]
| otherwise = [ ( x , y + 1 ) ]

where
enpassantCaps = f i l t e r (\ ( x2 , y2 ) −>

enpassant brd == Just ( x2 , y2 ) ) $
f i l t e r (uncurry inBounds ) $
[ ( x + 1 , y ) , ( x − 1 , y ) ]

captures = f i l t e r (\ ( x2 , y2 ) −> opponentAt x2 y2 ) $
( enpassantCaps ++ f i l t e r (uncurry inBounds )
[ ( x + 1 , y + 1) , ( x − 1 , y + 1 ) ] )

movesFrom ’ ( Piece Black Pawn)
| not $ null captures = captures
| y == 0 | | isJust ( pieceAt x ( y − 1) brd ) = [ ]
| y == 6 && isNothing ( pieceAt x ( y − 2) brd ) =

[ ( x , y − 1) , (x , y − 2 ) ]
| otherwise = [ ( x , y − 1 ) ]

where
enpassantCaps = f i l t e r (\ ( x2 , y2 ) −>

enpassant brd == Just ( x2 , y2 ) ) $
f i l t e r (uncurry inBounds ) $
[ ( x − 1 , y ) , ( x + 1 , y ) ]

captures = f i l t e r (\ ( x2 , y2 ) −> opponentAt x2 y2 ) $
( enpassantCaps ++ f i l t e r (uncurry inBounds )
[ ( x − 1 , y − 1) , ( x + 1 , y − 1 ) ] )

Minimax.hs

module Minimax ( MinimaxTree ( . . )
, moveList
, s c o r e
, boardOf
, next
, nextBoards
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, minimaxFrom
, fromRoot
, negaMax
, itDeep
) where

import Data .Maybe
import Data . List
import Chess
import Control . P a r a l l e l . S t r a t e g i e s ( using , parLis t , r s eq )

−− Get a l l p o s s i b l e moves
moveList : : Board −> [ ( Int , Int , Int , Int ) ]
moveList brd
| null caps = empty
| otherwise = caps

where
empty = [ ( x , y , f s t z , snd z ) | x <− [ 0 . . 7 ] , y <− [ 0 . . 7 ] , z <− movesFrom x y brd ]
caps = f i l t e r (\ ( , , x2 , y2 ) −> isJust $ pieceAt x2 y2 brd ) empty

{− Data s t r u c t u r e encoding minimax t r e e
− Root i s s t a r t i n g p o s i t i o n
− Par i t a l i s a node
− Fina l i s a l e a f
−}

data MinimaxTree = Root ( Board ) [ MinimaxTree ]
| P a r t i a l ( Board ) [ MinimaxTree ] ( MinimaxTree )
| Fina l ( Board ) ( MinimaxTree )

boardOf : : MinimaxTree −> Board
boardOf ( Root brd ) = brd
boardOf ( P a r t i a l brd ) = brd
boardOf ( Fina l brd ) = brd

next : : MinimaxTree −> [ MinimaxTree ]
next ( Root nxt ) = nxt
next ( P a r t i a l nxt ) = nxt
next = error ( ”Next c a l l e d on l e a f ” )

nextBoards : : Board −> [ Board ]
nextBoards brd = [ ( fixedMove x y x2 y2 ) | (x , y , x2 , y2 ) <− moveList brd ]

where
f ixedMove x y x2 y2 = case move ’ x y x2 y2 brd of

Right new brd −> new brd
Left −> error ( ” I n v a l i d move given ” )

minimaxFrom ’ : : MinimaxTree −> Board −> MinimaxTree
minimaxFrom ’ parent brd

| null nextPos = Fina l brd parent
| otherwise = p a r t i a l

where
p a r t i a l = P a r t i a l brd (map (minimaxFrom ’ p a r t i a l ) nextPos ) parent
nextPos = nextBoards brd

−−Bui lds the minimax t r e e from a g iven node
minimaxFrom : : Board −> MinimaxTree
minimaxFrom brd = root

where
root = Root brd (map (minimaxFrom ’ root ) nex tPos i t i on s )
nex tPos i t i on s = nextBoards brd

fromRoot : : MinimaxTree −> [ Board ]
fromRoot ( Root brd ) = brd : [ ]
fromRoot ( P a r t i a l brd parent ) = brd : ( fromRoot parent )
fromRoot ( Fina l brd parent ) = brd : ( fromRoot parent )

−− S t a t i c e va l ua t i on . 100 = win .
s co r e : : MinimaxTree −> Int
s co r e ( F ina l brd ) = i f turn brd == White then 100 else −100
s co r e mmTree = max (−99) $ min 99 h e u r i s t i c

where
brd = boardOf mmTree
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mult = i f turn brd == White then 1 else −1
qBlack = length $ p i ece sOf Black brd
qWhite = length $ p i ece sOf White brd
flexMe = length (next mmTree)
f lexOp = length ( moveList brd{ turn =

i f turn brd == White then Black else White })
h e u r i s t i c = 10 ∗ ( qBlack ‘div ‘ qWhite − 1) + mult ∗ ( f lexMe − f lexOp )

−− S imp l i f i e d minimax
negaMax : : Int −> MinimaxTree −> Int
negaMax ( Fina l brd ) = i f ( turn brd == White ) then 100 else −100
negaMax n mmTree
| n == 0 = mult ∗ ( s co r e mmTree)
| otherwise = −minimum (map (negaMax (n−1)) nb ‘ using ‘ pa rL i s t r s eq )

where
nb = take 4 $ sortOn (negate . (∗mult ) . s c o r e ) $ next mmTree
brd = boardOf mmTree
mult = i f ( turn brd == White ) then 1 else −1

−− Minimax t ha t s t o r e s the b e s t move .
miniMaxWithMoves : : Int −> MinimaxTree −> ( Int , [Char ] )
miniMaxWithMoves n mmTree =

maximumBy (\ ( x , ) (y , ) −> compare x y ) $
zip r e s u l t s (map stringMove $ moveList $ boardOf mmTree)
where

stringMove ( x1 , y1 , x2 , y2 ) = ( posToStr ( x1 , y1 ) ) ++ ( posToStr ( x2 , y2 ) )
nb = take 8 $ sortOn (negate . s c o r e ) $ next mmTree
r e s u l t s = map (negate . ( negaMax $ n−1)) nb

‘ using ‘ pa rL i s t r s eq

−− Ca l l s minimax wi th in c r ea s in g depth u n t i l answer .
i tDeep : : Int −> Int −> Board −> ( Int , [Char ] , Int )
itDeep depth l i m i t brd
| abs ( f s t r e s u l t s ) == 100 | | depth > l i m i t = r e t
| otherwise = itDeep ( depth+1) l i m i t brd

where
r e t = ( f s t r e s u l t s , snd r e s u l t s , depth )
r e s u l t s = miniMaxWithMoves depth $ minimaxFrom brd

Main.hs

import Data .Maybe
import Chess ; import Chess .FEN
import Minimax
import Control . P a r a l l e l . S t r a t e g i e s ( using , parLis t , r s eq )

import System . Environment (getArgs , getProgName)
import System .IO . Error ( catchIOError , isUserError , isDoesNotExistError ,

ioeGetFileName , isPermissionError )
import System . Exit ( d i e )

−− Main entry po in t . So l v e s board , r e turns score (White wins ) + be s t f i r s t move
s o l v e : : Board −> ( Int , [Char ] , Int )
s o l v e brd = itDeep 1 8 brd

−− Formats the r e s u l t i n t o something readab l e
parse : : ( Int , [Char ] , Int ) −> [Char ]
parse ( scr , mv, qmv)
| s c r == 100

&& odd qmv = i n t r o ++ ” , White h igh ly favored , ” ++ conc
| s c r == 100 = i n t r o ++ ” , Black h igh ly favored , ” ++ conc
| s c r > 0 = i n t r o ++ ” , White favored ( ” ++ show s c r ++

” ) ” ++ conc
| otherwise = i n t r o ++ ” , Black favored ( ” ++ show s c r ++

” ) ” ++ conc
where

i n t r o = ” Best move : ” ++ show mv
conc = ” search depth : ” ++ show qmv

main : : IO( )
main = do [ f i l ename , ca s e s ] <− getArgs

5



contents <− readFile f i l ename
l et brds = map ( fromJust . fromFEN) . take ( read ca s e s ) $ l ines contents

r e s u l t s = map parse (map s o l v e brds ‘ using ‘ pa rL i s t r s eq )
sequence $ map putStrLn r e s u l t s

‘ catchIOError ‘ \e −> do
pn <− getProgName
d i e $ case ioeGetFileName e of

Just fn | isDoesNotExistError e −> fn ++ ” : no such f i l e ”
| isPermissionError e −> fn ++ ” : Permiss ion denied ”
| isUserError e −> ”Usage : ” ++ pn ++

” <f i l ename> <# of t e s t cases>”
| otherwise −> show e

play.hs

import Data .Maybe
import System . Environment (getArgs )
import Chess ; import Chess .FEN; import Minimax

play : : Board −> IO( )
play brd = do putStrLn $ show brd

mv <− getLine
i f mv == ” best ”
then putStrLn . show $ itDeep 1 6 brd
else

case move mv brd of
Right nxt brd −> play nxt brd
Left mvError −> do

putStrLn $ show mvError
play brd

main : : IO ( )
main = do args <− getArgs

let brd = case args of
[ ] −> Chess .FEN. defau ltBoard
fen −> fromJust . fromFEN $ unwords f en

play brd

Parallelism

We found that the simple method of creating sparks recursively works decently well. Using rseq in the
recursive calls of the negaMax function led to good speedups. Each recursive call to the negaMax function
creates at most 4 sparks except the first call which generates 8, and we only search up to a depth of 8, so
there may be at most 8 ∗ 47 = 131072 sparks bring created at a time. But many of these sparks don’t ignite
new sparks so the actual amount is much less.

Even after running through 200 examples the spark pool did not overflow, so we very reliably run our
algorithm. Additionally we ran our test cases in parallel, a la Marlow.

Benchmarks

We ran the program on our list of 200 randomly generated board positions, using a varying number of CPU
cores.

N Time (s) Speedup
1 116.6 1x
2 60.3 1.93x
3 45.9 2.54x
4 40.5 2.88x
5 39.2 2.97x
6 37.8 3.08x
7 36.1 3.22x
8 35.1 3.32x

The performance gains start off linear, but soon drop off and peak at around 8 cores, which was 3.32 times
faster than running it sequentially. At 8 cores, there are over 4 million sparks created and only 9800 of
them are converted. We thought that this may be due to our strategy creating a new spark at every node
in the graph, but running a modified strategy where spark creation was limited to depth 2 did not make a
significant performance difference. Still, these are good performance gains. Running the program on 4 cores
leads to around a 3x speedup, which suggests that our strategy works well and that searching the tree can
be parallelized fairly effectively.
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