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1. Motivation 
Ray tracing is a common technique for generating realistic lighting and reflection 
effects. Most related algorithms are parallel in nature in order to run on GPUs, 
which makes it suitable to be the final project of this course. 

 
As opposed to the majority of ray tracer projects that only support basic 
geometries such as cube, plane and sphere, placed in a simple scene, this 
project is intended for complex scenes, which means 1) multiple objects and 
lights are placed in different pose, 2) objects are defined with triangle mesh 
instead of simple parametric functions, and each mesh contains thousands of 
triangles.  

 
To deal with a complex scene, it’s not a good idea to use custom scene definition 
formats (like .xml), if there’s no real-time visualization tools for that format. For 
example, manually calculating the pose of all objects is hard, and we have to run 
our renderer frequently to verify any adjustment. Thus, I make use of the Unity 
Engine, where I can edit the scene before exporting the generated scene 
definition (.unity) to our ray tracer. On the other hand, I have to ensure that my 
parsing and transformation result would generate the exact same scene as I see 
in the Unity editor. 

 
To support large number of triangles (usually >10k in total) given by the mesh, 
it’s obviously unacceptable if we check every one of them for a ray-triangle 
intersection test when doing ray casting. Instead, we have to build a space 
partitioning data structure, such as BVH, octree or k-d tree, to discard most 
unnecessary checks. Kd-tree is my choice for this project, which provide 
logarithm time complexity as opposed to linear in case of brute force. 

 



2. What I implemented and & How 

2.1 Input handling 
Parsing the scene definition and performing correct geometric transformation is 
the first step towards scene construction. The input for the scene is a .unity file 
with description of each object’s pose (position & rotation represented by euler 
angles) , scale (in x,y,z axis), and mesh name. After knowing what mesh we 
would be needing, we can read them from corresponding .obj files. For simplicity, 
I use the name of a GameObject in Unity to represent the file name, and also ask 
the user to provide a directory where he stores the .obj file. The parser I wrote for 
.obj only supports triangle faces, so any .obj with polygon faces have to be 
triangulated with softwares such as MAYA and Blender. 
 
The triangles defined in the .obj file represents their position in a local coordinate. 
We have to transform it to the global coordinate based on its pose and scale in 
the scene. The point and normalized vector transformation are implemented in 
transformPoint and transformVectorNormal function. Note that Unity uses a 
left-handed coordinate system which is the opposite to the convention in most 
mathematics courses, so here I swapped the Y and Z axis and turned it into a 
right-handed coordinate system. It makes no difference in the rendering result as 
the scene itself is not changed. 
 
At the end of this step and before performing ray trace, the scene is represented 
with a list of triangles, with material information attached to them as well. 

2.2 Ray Tracing 
The ray tracing algorithm is implemented as follows: 

For each pixel on the screen, 
1. Shoot a ray from the view point to the center of that pixel. If the ray 
doesn’t hit any surface, return background_color. Otherwise, go to 2. 
2. Calculate  
diffuse_color = sum {light_color * dot(surface_normal, light_dir) * 
surface_diffuse} for each visible light, where surface_normal is the 
interpolated normal inside a triangle, light_dir is the direction from the hit 
point to the light, and visible light means there’s nothing that blocks the 
light from reaching the hit point. To determine if a light is visible, we have 
to do a ray cast from the light and check the first hit. 



3. Calculate the reflected ray based on incoming ray and surface normal. 
Cast the reflected ray. If it reaches maximum recursion count or doesn’t hit 
any surface, return diffuse_color. Otherwise, go to 2 and recursively 
calculate the reflected_color. Return diffuse_color + surface_reflection * 
reflected_color. 
 

This approach is a basic version for ray tracing, but it’s good enough to 
demonstrate some reflection effects as well as shadows.  
 
Each pixel can be run in parallel since there’s no dependency in between.  

2.3 K-d tree 
The k-d tree needs to be built before starting ray tracing, to accelerate the ray 
cast, i.e. ray-triangle intersection query. It is a binary search tree that stores a 
group of triangles. Each node is split on the center of mass (C.M.) of all triangles 
underneath: all triangles completely lying on the left of the C.M. go to the left 
branch, all triangles completely lying on the right go to the right branch, while the 
rest of them (i.e. spanning across both sides) are stored right in this node. Level 
1,4,7.. split on the X axis, level 2,5,8.. split on the Y axis, and level 3,6,9.. split on 
the Z axis. Its construction can be done recursively as described above. I build it 
in a single-threaded manner as it usually takes up less than 10% of the overall 
running time. 
 
To check the first/nearest intersection between a ray (defined by its origin and 
direction) and a group of triangles stored in a k-d tree, it can be easily done 
recursively for each tree node. Here we assume the ray goes from left to right 
with regard to the particular axis of that level, since the opposite case is 
symmetric. 
 
1.Iterate upon all triangles stored in that node and store all hits. If this is a leaf 
node, just return the nearest one. 
2.If the axis-aligned bounding box (AABB) of the left child intersects with the ray, 
run the algorithm for the left child. If the result is not empty, go to 4. 
3.If the AABB of the right child intersects with the ray, run the algorithm for the 
right child. 
4.Combine the outcome of step 1,2 and 3 and return the nearest one. 
 



We make use the AABB to drop out a branch if its bounding box doesn’t even 
intersect with the ray. We also adopt a trick in step 2 since any intersection in 
step 3, i.e. with the right child, is further than what we get from the left child, so 
there’s no point doing step 3 in this case. 
 
Utilizing the k-d tree provides a huge performance improvement for this scenario, 
while the trick mentioned above provides another 10%~15% speed up. It will take 
days to render the baseline scene in the next section without using k-d tree, 
based on my observation over a much smaller scene. 
 

3. Baseline scene 
We would use a consistent scene below for demonstration and efficiency 
analysis. The scene is edited and previewed inside the Unity editor, as shown in 
the screenshot below. Note that Unity uses a different lighting model so what we 
care about here is the geometry relationship rather than the exact color. 

 
The mesh of all objects are downloadable for free on the Internet. Here’s a 
summary of what exactly the scene contains: 
 
 



Name Triangles contained Number Material 

Camera / 1 / 

Point Light / 2 / 

sphere 6,240 1 100% Reflective 

Cube (used as 
floor) 

12 1 80% Reflective 
40% Diffusion, Blue 

man 4,704 1 Diffusion, Green 

car 10,385 1 Diffusion, Yellow 

pig 2,454 3 Diffusion, Pink 

tree 6,565 2 Diffusion, Green 

Total 41,833 12 / 
 
Here’s the result of the ray tracer two resolutions 1) 1024*768 2) 320*240, and 
trace depth = 2(At most 2 reflections are considered for each ray). The first 
resolution is for evaluating the peak image quality, while the second is for doing 
tests and analysis since the total time is far shorter. 
 



 
Resolution = 1024 * 768. Total Time = 6504s, GC = 1068s on 8 threads 



 
Resolution = 320 * 240. Total Time = 133s, GC = 48s on 8 threads 

 
We can see from the first image that the ray tracer produces correct reflection 
and shadow effects, while geometric relationship of all objects is the same as 
what we see in the Unity Editor. 
 

4. Parallelism Analysis 

4.1 Parallelism on pixels 
The first attempt I made was to evaluate each pixel parallelly, i.e. we would have 
320*240 sparks when rendering a 320*240 image. I simply used parList API with 
deepseq strategy, to fully evaluate every pixel’s color. 



 
Resolution = 320 * 240 

 



Resolution = 320 * 240, Time = 935s on 8 threads 
 

We can see that multi-thread execution does provide some speedup, but 
apparently not to the degree we want. The number of sparks is way more than 
the extra threads we have, and the task distribution is heavily unbalanced. 

4.2 Parallelism on blocks 
To avoid creating too many sparks, it’s natural to divide the pixels into blocks and 
evaluate all pixels inside the same block sequentially. The figure below shows 
the result of dividing the image into 12 blocks so that we can evaluate them with 
12 threads.  

 
However, there’s a pitfall in this case that the first 3 blocks barely need any 
execution time, as there’s almost nothing in that area. As a result, the task to be 
heavily unbalanced and lead to notably longer execution time. 
 
To avoid this pitfall, we just have to break the sequential order of pixels inside a 
block. The way I adopt is doing a permutation to the list of all pixels that places 



ith element to slot (p*i) % length, where p is a large prime number and length is 
the length of the list. This way we can ensure that no two elements go to the 
same slot, i.e. we won’t evaluate the same ray twice (Proof: assume p*i = p*j + 
k*length => length | p(i-j) => length | (i - j) given p > length and p is prime => i = j). 
Once we permute the list of rays, there’s a far better chance that task will be 
distributed equally among all threads. To retrieve the final result, we just have to 
do the inverse mapping that brings a pixel back to its original position. 

 
Resolution = 320 * 240 



 
Resolution = 320 * 240, Time = 133s on 8 threads 

 
The speedup now steadily increases as we use more threads. Also, we get a 
much more even distribution of tasks on all threads.  
 
If we compare the two approaches closer, we can see that there’s no significant 
time difference if using a single thread, while the latter is 7 times faster when it 
comes to 8 threads. Honestly it’s a bit strange to me what makes the difference 
so huge. 
 

5. Summary 
This project exploits the power of the data structure (k-d tree) and parallelism in 
accelerating ray tracing algorithm, and produces a deliverable that enables an 
efficient workflow with the help of the Unity Editor. 
 
There’s still plenty of room for improvement. For instance, we can see from the 
threadscope screenshot that the construction of k-d tree takes up the first 5~10% 
running time, on a single thread. There are some parallel k-d tree construction 
papers suggested by the TA, but I didn’t have enough time for that. 
 



The file raytracer.hs contains all the code I wrote for this project. All codes 
are written by myself, while any reference is shown below as well as inside 
a comment. 
 

6. References 
Htrace, Haskell RayTracer http://www.nobugs.org/developer/htrace/index.html 
 
Notes on efficient ray tracing, Solomon Boulos, University of Utah 
 
http://www.cs.utah.edu/~awilliam/box/box.pdfb 
 
 
 

http://www.nobugs.org/developer/htrace/index.html
http://www.cs.utah.edu/~awilliam/box/box.pdfb

