
COMS 4995: Parallel Functional Programming (Fall ’19) December, 2019

Parallel Autocomplete

Authors: Sambhav Anand (sa3433), Kanishk Vashisht (kv2295)

Abstract

The task of autocompletion is returning an arbitrary number of popular
words that begin with a suggested prefix. Our project was centered around par-
allelising the entire autocomplete workflow. We look at parallelly constructing
a word frequency table and then traversing a trie to autocomplete a given word.
We compare single core implementations versus multiple core implementations
on small and large bodies of text.

Contents

1 Introduction 1

2 Data Gathering 1

3 Sequential approach 1
3.1 Word Frequencies . 1
3.2 Word Completion . 1

4 Parallel approach 1
4.1 Word Frequencies . 1
4.2 Word Completion . 2

5 Results 2
5.1 Observations . 2
5.2 Results . 2

5.2.1 Word Frequencies . 2
5.3 Conclusion . 2

6 Appendix 3
6.1 Core Usage . 3
6.2 Code Listing . 4

1 Introduction

The problem we undertook was that given a corpus of text, could we return the k
most popular words that began with a suggested prefix. Popularity is defined on
the basis of frequency of the word in the original corpus.

We break down the original problem into two sub problems.

1. Word Frequencies: This is the step where the corpus is examined and
reduced to a dictionary of words that includes the frequencies. This is an
intermediate step that only needs to be run once for an infinite number of
autocomplete queries.

2. Word Completion: In this step we get two inputs from the user - the prefix
p and k, the number of words to return. We load the words as a trie and then
pick the k most popular children with the prefix p and return them.

2 Data Gathering

We used a dataset that contains 1,097,592 Amazon reviews spanning May 1996 -
July 2014 in the CDs/Vinyl section. There are a total of 200M words of text with
200K unique words in this dataset. This dataset can be found here.

3 Sequential approach

3.1 Word Frequencies

We implement word frequencies using map-reduce. Our mapping function takes
a filename, reads the content from it and then generates a frequency table. Our
reducer function takes these frequency tables and then combines them into one
bigger frequency table. We convert this frequency table to a list of (word, frequency)
pairs which we then write to a file.

3.2 Word Completion

When its time for word completion, we load our file into a trie. At this point we
ask the user for an input and return the k most common words that begin with the
provided input.

4 Parallel approach

4.1 Word Frequencies

Our parallel approach is similar to our sequential approach except we run the map-
ping functions in parallel on different files.

1

http://jmcauley.ucsd.edu/data/amazon/

4.2 Word Completion

We tried to parallelize our word completion by querying the trie in parallel. We find
the parent node that represents the prefix, then we traverse all of its children nodes
in parallel and return the k most common words from each. After this we find the k
most common words in total and return those. However, we found that for even the
most basic prefixes such as ”pre” or ”pr” the sequential approach was outperforming
our rudimentary parallel approaches as there were only close to 4-5000 words to sort
through and pick k from. We believed that parallelising this step would not change
much so instead we focused on improving the efficiency of word frequencies to scale.

5 Results

5.1 Observations

One interesting thing we observed was that if the files were not distributed well then
the cores did not provide much optimization. This is obvious since we parallelize
over files. This is why for the general results that follow we made sure to divide our
dataset into 55 evenly distributed files.

5.2 Results

5.2.1 Word Frequencies

The following table shows our results for the word frequency part. We look at how
things change by making the corpus larger and by adding more cores.

Words / Cores 1 core 4 cores 8 cores

417,017,098 966s 416s 238s

208,508,549 355s 140s 136s

75,667,556 160s 49s 37s

1,899,4220 40s 16s 16s

We’ve also attached the output artifacts (in the appendix section) showing the
usage of our cores for the 400 million word data set. As one can see all our cores are
being used well and as we’re adding more cores they are getting busier as well. This
shows that our algorithm is using parallelization efficiently. This is also evident in
the fact that we can deal with a 417m word corpus in 238s.

5.3 Conclusion

In conclusion, we have:

1. Come up with a full algorithm for word completion that is broken into word
frequencies and word completion

2. We are able to parallelise word frequencies to a large scale (417m words).

2

6 Appendix

6.1 Core Usage

Figure 1: One Core

Figure 2: Four Cores

3

Figure 3: Eight Cores

6.2 Code Listing

1 module Main where
2

3 import Data.List (sort, group, sortBy, groupBy, isPrefixOf, isInfixOf, sortOn)
4 import Data.Text (isSuffixOf)
5 import Control.Parallel
6 import Control.Parallel . Strategies
7 import Data.Char (isAlpha, isSpace, toLower)
8 import qualified Data.ByteString.Char8 as BC
9 import qualified Data.Trie as T

10 import qualified Data.Map as M
11 import System.Directory
12 import System.IO
13

14 mapReduce :: NFData b1 => (a −> b1) −> ([b1] −> b2) −> [a] −> b2
15 mapReduce mapper reducer input = pseq mOutput rOutput
16 where mOutput = parMap (rpar ‘dot‘ rdeepseq) mapper input
17 rOutput = reducer mOutput ‘using‘ rseq
18

19

20 mappingFunc :: String −> M.Map String Int
21 mappingFunc document = getWordFreqMap $ (strToList) document
22

23

24 getWordFreqMap :: [String] −> M.Map String Int
25 getWordFreqMap tokens = M.fromListWith (+) (map (\x −> (x, 1)) tokens)
26

27 strToList :: String −> [String]
28 strToList str = words $ filter (\char −> isAlpha char || isSpace char) $ map toLower str
29

4

30 reducingFunc :: [M.Map String Int] −> [(String, Int)]
31 reducingFunc maps = M.toList $ foldl (\foldMap (word, count) −> M.insertWith (+) word count foldMap) (M.empty)

listOfMaps
32 where listOfMaps = concat (map M.toList maps)
33

34 loadList :: FilePath −> IO (M.Map String Int)
35 loadList fname = do
36 filedata <− readFile fname
37 contents <− return (read filedata :: [(String, Int)])
38 let loadedMap = M.fromList contents
39 return loadedMap
40

41 saveList :: Show a => a −> FilePath −> IO ()
42 saveList ls fname= writeFile fname (show ls)
43

44 FilePath −> IO ()
45 buildWordList directory = do
46 files <− listDirectory directory
47 let myFiles = filter (\x −> not (elem x [”.”, ”..”])) (map (\x −> directory ++ x) files)
48 parsedFiles <− mapM readFile myFiles
49 let freqMap = mapReduce mappingFunc reducingFunc parsedFiles
50 putStrLn $ ”Found ” ++ (show.length) freqMap ++ ” words!”
51 saveList freqMap ”word counts.txt”
52

53 buildTrie :: M.Map String Int −> T.Trie Int
54 buildTrie loadedMap = T.fromList (map (\x −> (BC.pack (fst x), snd x::Int)) (M.toList loadedMap))
55

56

57 Ord b1 => T.Trie b1 −> IO b2
58 userInput trie = do
59 putStrLn ”enter word”
60 pre <− getLine
61 putStrLn ”Enter number of words you want...”
62 k <− getLine
63 let topk = take (read k::Int) (sortBy (\(,a) (,b) −> flip compare a b) $ T.toList (T.submap (BC.pack pre) trie))
64 putStrLn ”Found the following words”
65 putStrLn ” − Start − ”
66 mapM (\(a,) −> putStrLn $ BC.unpack a) topk
67 putStrLn ” − Finish − ”
68 userInput trie
69

70

71 main :: IO ()
72 main = do
73 −− buildWordList ”./data/”
74 loadedMap <− loadList ”data.txt”
75 let trie = buildTrie loadedMap
76 putStrLn $ ”Found ” ++ (show $ T.size trie) ++ ” words”
77 userInput trie

Citation: the format for this code can be found here

5

	Introduction
	Data Gathering
	Sequential approach
	Word Frequencies
	Word Completion

	Parallel approach
	Word Frequencies
	Word Completion

	Results
	Observations
	Results
	Word Frequencies

	Conclusion

	Appendix
	Core Usage
	Code Listing

