
Parallel KenKen Solver Report
Harry Smith

hs3061
December 18, 2019

1 How it Works

1.1 The KenKen Puzzle

My project solves KenKen puzzles, which are Sudoku-like number puzzles played on a
square N ×N grid for any size N . Each row and each column must contain exactly one
instance of each number between 1 and N . Additionally, there are units partitioning the
game board made of contiguous cells. Each of these units indicate other mathematical
constraints that the values entered in the constituent cells must satisfy. In particular,
these constraints are adding up to a target sum, subtracting (largest to smallest) to
a value, multiplying to a target sum, or dividing (largest to smallest) to a particular
quotient. A unit may also contain just one cell, in which case its associated target value
is automatically the value that the cell will take in a correct solution. Subject to the
constraint of no repeats within any row or column, the same number may appear more
than one time in the same unit.

I obtained a corpus of KenKen puzzles from http://www.mlsite.net/neknek/
play.php. Each puzzle has a single solution. Below, I present an example puzzle.

7

* 336 A1 A2 A3 A4
+ 8 A5 A6 B6
+ 10 A7 B7 C7

* 210 B1 C1 D1
+ 4 B2 B3

* 20 B4 C3 C4
! 6 B5
! 7 C2
+ 13 C5 D4 D5 E5
+ 13 C6 D6 D7

* 30 D2 E1 E2
+ 7 D3 E3 E4

* 210 E6 E7 F6 F7
! 4 F1
+ 8 F2 G1 G2
+ 8 F3 F4

* 168 F5 G5 G6 G7
-2 G3 G4

Observe that each row specifies a unit with a constraining operation, a target value,
and the addresses of the constituent cells listed in row major order (i.e. ‘B4’ refers to
row 2, column 4). The ! operator indicates a unit of size 1, which has as its target value

1

http://www.mlsite.net/neknek/play.php
http://www.mlsite.net/neknek/play.php

the correct assignment for the only cell in this unit. Additionally, the first line of the
specification indicates the size of the puzzle (in this case, 7).

1.2 The Code

The majority of the logic for the game of KenKen is contained within the file src/Kenken.hs.
The code which is responsible for parallelizing the execution of the solver on the
list of input puzzles is located in app/Main.hs. Each puzzle is individually con-
tained in a file puzzles/<SIZE>_<INDEX>.txt with a corresponding solution in
solutions/<SIZE>_<INDEX>.txt.

1.2.1 Kenken.hs

This module specifies a handful of datatypes used in the puzzle logic, the most inter-
esting of which are Constraint and Partial. A Constraint is a representation of
one row of the puzzle. Specifically, it represents an operation which accumulates its
members to reach a target value. Although the uniqueness of elements in rows and
columns could be represented as a Constraint, I chose to represent these restrictions
implicitly to maintain that each cell has precisely one Constraint.

data Constraint = Constraint {members :: [Address]
, op :: Operation
, target :: Int
} deriving (Show, Eq)

Additionally, we have the data type Partial. This represents a partial solution to the
KenKen puzzle, while also keeping track of the relationships among cells implied by
the underlying constraints. In particular, the state field tracks all candidate values
for each cell. The field pPeers maps each cell to the set of other cells in the same
constraining unit (I call them the cells ‘peers’) and pUnit maps each address to its own
constraining unit.

data Partial = Partial {state :: M.Map Address [Int]
, pPeers :: M.Map Address (S.Set Address)
, pUnits :: M.Map Address Constraint
} deriving (Show, Eq)

Lines 23 through 80 of Kenken.hs provide the framework for how to parse a puzzle
from its String representation into an initial Partial, which represents a puzzle with
all constraints formalized but without any steps taken to solve it. I leave these functions
to be explored in the source code by the reader, since I believe that the underlying logic
used to write them is somewhat easily intuitied from the design of the Constraint
and Partial datatypes discussed above.

At this point, I will introduce the basic pipeline of how I solve a KenKen puzzle.
The algorithm is broadly a depth-first search, where at each call to the function search,
the computer attempts to assign a value to a cell chosen from its current available
values. Whenever a cell has a value assigned to it or has a potential value eliminated,
three basic steps occur. First, the actual change to the state of the Partial is made,
resulting in a new Partial. Second, constraints are propagated from the changed
cell to eliminate or assign potential values in its peers, resulting in a new Partial

2

generated for each deductive change.1 Finally, inconsistent puzzles result in terminated
execution paths.

Progress is made in this search by doing either an assignment or an elimination;
however, I have chosen to implement assignment of a chosen value (in assign) as
repeated elimination of values in this cell that are not the chosen value.

assign :: Address -> Int -> Partial -> Maybe Partial
assign a v p =

do assigned <- foldM f p toRemove
propagateSet assigned a

where toRemove = filter (/= v) $ (state p) M.! a
f = \partial value -> eliminate a value partial

The elementary operation of this algorithm is thus the elimination, presented here:

eliminate :: Address -> Int -> Partial -> Maybe Partial
eliminate a v p =

do removed <- remove a v p
unitPropagated <- propagateUnit removed a
return unitPropagated

Elimination is responsible for removing a single value as a possibility at a particular
address and then propagating the constraint of that address’ unit forward. The prop-
agation step here is most robust when handling cells with addition or multiplication
as their operations. In these cases, it is quite simple to determine whether any of the
remaining value combinations lead to a consistent assignment. When there is no such
combination, the search down this game state ceases. This pruning is quite imperative
for runtime efficiency. For a time, I attempted to carry the effects of the new assignment
forward and proactively remove values that would now be inconsistent. While the
process of finding newly inconsistent values was relatively simple and efficient, the
extra propagation steps resulted in a significant slowdown due to expensive further
eliminations down paths that ended up becoming inconsistent anyway.

The search is terminated in a successful state when every list contained in state
has exactly one member.

1.2.2 Main.hs

I include in full here a description of Main.hs, which provides the logic for solving
multiple puzzles from a manifest provided as a command line argument.

main :: IO ()
main = do puzzles <- getArgs >>= \[f] -> lines <$> readFile f

let solutions = parMap rpar solve puzzles
print $ length $ filter isJust $ solutions

Of course, I provide heavy credit to the course notes for providing essentially this exact
code. Much like the example provided in class, the file that Main expects contains one
puzzle description per line. To make this possible, I converted the puzzle format from a
line-separated format to a semicolon-separated format. From there, the use of parMap
with the associated strategy rpar results in a dynamically partition set of problems
where each call to solve is handled by a separate spark.

1As an example of this second step, consider the ‘trick’ of assigning the value 1 to the only empty cell
in a row which has all other values 2 . . . N assigned.

3

2 Effects of Parallelism

I’ll begin by presenting the raw statistics on how my program performs with increasing
numbers of cores. Broadly, then, parallelizing this solver is a success. The main

Table 1:
cores Time elapsed (s) Speedup Sparks Created Conversions GCs Fizzles
1 5.026 1x 1362 0 258 1104
2 2.856 1.76x 1362 1350 2 10
3 2.054 2.45x 1362 1361 1 0
4 1.820 2.76x 1362 1246 13 103

shortcoming becomes apparent when looking at a Threadscope trace of an execution
on multiple cores. Presented below in Figure 1 the visualization for the execution on
four cores. Immediately obvious is a load balancing problem, despite the strategy of

Figure 1: Execution Viz for Four Cores on Puzzles Sizes 3-7

dynamic balancing that I attempted. This is a result of puzzles of size 7 being relatively
slow for my solver to handle and the fact that these puzzles begin to have more variance
in how long they take to solve. Among the first ten puzzles of size 7, there are some
that take less than aa tenth of a second and others that take over half of a second. So
while this is obviously detrimental to runtime, this is a shortcoming of the underlying
sequential code rather than the parallelization strategy taken. If we compare with
Figure 2, an execution on puzzles of up to size 6 which are much quicker to solve, we
see that the load balancing issue is much less significant. Indeed, on these smaller
puzzles, we get a speedup of 3.2× when running the solver on four cores (0.69s) over a
single core (2.21s). To improve this going forward, it would be helpful to parallelize
the search step within the solving algorithm as well. This would allow the machine
to follow along multiple independent execution paths at once, perhaps speeding up
execution even further.

3 Code Listing

Kenken.hs

4

Figure 2: Execution Viz for Four Cores on Puzzles Sizes 3-6

1 {-# LANGUAGE NamedFieldPuns #-}
2 module Kenken where
3
4 import Data.Char (ord)
5 import qualified Data.Map as M
6 import qualified Data.Set as S
7 import qualified Data.List as L
8 import Data.List.Split (splitOn)
9 import Control.Monad (guard, foldM, msum, fmap)

10 import System.IO (IOMode (ReadMode), hGetContents, openFile
)

11
12 type Address = (Int, Int)
13 data Constraint = Constraint {members :: [Address], op :: Operation,

target :: Int} deriving (Show, Eq)
14 data Operation = Add | Sub | Mul | Div | Asrt deriving (Show, Eq)
15
16 data Partial = Partial {state :: M.Map Address [Int]
17 , pPeers :: M.Map Address (S.Set Address)
18 , pUnits :: M.Map Address Constraint
19 } deriving (Show, Eq)
20
21
22 crossProd :: [a] -> [b] -> [(a, b)]
23 crossProd as bs = (,) <$> as <*> bs
24
25 translate :: String -> Address
26 translate (r : c : []) = (ord r - 64, read $ c : "")
27 translate _ = undefined
28
29 symToOp :: String -> Operation
30 symToOp "+" = Add
31 symToOp "-" = Sub
32 symToOp "*" = Mul
33 symToOp "\\/" = Div
34 symToOp "!" = Asrt
35 symToOp _ = undefined
36
37 readKenkenFile :: String -> IO (String)
38 readKenkenFile fname = do
39 h <- openFile fname ReadMode
40 hGetContents h

5

41
42 showUnits :: Address -> IO ([Constraint], Int) -> IO (Maybe Constraint)
43 showUnits addr gameIO = do game <- gameIO
44 let us = units game
45 return $ M.lookup addr us
46
47 showPeers :: Address -> IO ([Constraint], Int) -> IO (Maybe (S.Set

Address))
48 showPeers addr gameIO = do game <- gameIO
49 let ps = peers . units $ game
50 return $ M.lookup addr ps
51
52 readKenken :: String -> ([Constraint], Int)
53 readKenken kkStr = let spec : groups = splitOn ";" kkStr
54 translated = do
55 (op : target : group) <- map words

groups
56 return $ Constraint {op = symToOp

op,
57 target = read target,
58 members = map translate

group}
59 [_, size] = words spec in
60 (translated, read size)
61
62 units :: ([Constraint], Int) -> M.Map Address Constraint
63 units (constraints, _) = M.fromList associations
64 where associations = [(a, c) |
65 c <- constraints,
66 a <- members c
67]
68
69 peers :: M.Map Address Constraint -> M.Map Address (S.Set Address)
70 peers m = M.fromList [(addr, neighbors) | (addr, c) <- M.toList m,
71 let duplicateSet = S.fromList $

members c
72 neighbors = duplicateSet ‘S.

difference‘ S.singleton addr]
73
74 parsePuzzle :: ([Constraint], Int) -> Partial
75 parsePuzzle cs@(constraints, size) = Partial {state, pPeers, pUnits}

where
76 pUnits = units cs
77 pPeers = peers pUnits
78 state = M.fromList [(a, [1..size]) | c

<- constraints, a <- members c]
79
80 eliminate :: Address -> Int -> Partial -> Maybe Partial
81 eliminate a v p =
82 do removed <- remove a v p
83 unitPropagated <- propagateUnit removed a
84 return unitPropagated
85
86
87 assign :: Address -> Int -> Partial -> Maybe Partial
88 assign a v p =
89 do assigned <- foldM (\partial value -> eliminate a value partial) p

toRemove
90 propagateSet assigned a

6

91 where toRemove = filter (/= v) $ (state p) M.! a
92
93 remove :: Address -> Int -> Partial -> Maybe Partial
94 remove adr val p =
95 do candidates <- M.lookup adr $ state p
96 let reducedCands = L.delete val candidates
97 len = L.length reducedCands
98 guard (len /= 0)
99 return p{state=M.insert adr reducedCands $ state p}

100
101 propagateSet :: Partial -> Address -> Maybe Partial
102 propagateSet p@Partial{state} adr@(row, col) =
103 let [x] = state M.! adr
104 size = fst $ fst $ M.findMax state
105 setPeers = [(row, c) | c <- [1..size], c /= col] ++
106 [(r, col) | r <- [1..size], r /= row]
107 in foldM (\partial peer -> eliminate peer x partial) p setPeers
108
109 propagateUnit :: Partial -> Address -> Maybe Partial
110 propagateUnit p@Partial{pUnits} adr =
111 let constraint = pUnits M.! adr in
112 case op $ constraint of
113 Add -> propagateAdd p constraint
114 Mul -> propagateMul p constraint
115 Sub -> propagateSub p constraint
116 Div -> propagateDiv p constraint
117 _ -> Just p
118
119 existsSum :: Int -> [[Int]] -> Bool
120 existsSum target [] = target == 0
121 existsSum target (hd:rest) = or [existsSum (target - choice) $ rest |

choice <- L.reverse hd, choice <= target]
122
123 existsProd :: Int -> [[Int]] -> Bool
124 existsProd target [] = target == 1
125 existsProd target (hd:rest) = or [existsProd (target ‘div‘ choice) $

rest | choice <- L.reverse hd, target ‘mod‘ choice == 0]
126
127 propagateAdd :: Partial -> Constraint -> Maybe Partial
128 propagateAdd p@Partial{state} constraint =
129 let prs = members constraint
130 t = target constraint
131 possibilities = [(peer, state M.! peer) | peer <- prs]
132 fixed = L.filter (\(_,l) -> L.length l == 1) $ possibilities
133 free = L.filter (\(_,l) -> L.length l > 1) $ possibilities
134 freeVals = map snd free
135 fixedVals = map snd fixed
136 newTarget = t - (sum $ msum $ fixedVals) in
137 if not $ existsSum newTarget $ L.reverse $ L.sort $ freeVals
138 then Nothing
139 else return p
140
141 propagateMul :: Partial -> Constraint -> Maybe Partial
142 propagateMul p@Partial{state} constraint =
143 let prs = members constraint
144 t = target constraint
145 possibilities = [(peer, state M.! peer) | peer <- prs]
146 fixed = L.filter (\(_,l) -> L.length l == 1) $ possibilities
147 free = L.filter (\(_,l) -> L.length l > 1) $ possibilities

7

148 fixedVals = map snd fixed
149 freeVals = map snd free
150 newTarget = t ‘div‘ (product $ msum $ fixedVals) in
151 if not $ existsProd newTarget $ freeVals
152 then Nothing
153 else return p
154
155
156
157 propagateSub:: Partial -> Constraint -> Maybe Partial
158 propagateSub p@Partial{state} constraint =
159 let prs = members constraint
160 t = target constraint
161 possibilities = [(peer, state M.! peer) | peer <- prs]
162 fixed = L.filter (\(_,l) -> L.length l == 1) $ possibilities
163 free = L.filter (\(_,l) -> L.length l > 1) $ possibilities
164 largest:rest = L.reverse $ L.sort $ msum $ map snd fixed
165 result = largest - (sum rest) in
166 case free of
167 [] -> if result == t then return p else Nothing
168 _ -> return p
169
170 propagateDiv:: Partial -> Constraint -> Maybe Partial
171 propagateDiv p@Partial{state} constraint =
172 let prs = members constraint
173 t = target constraint
174 possibilities = [(peer, state M.! peer) | peer <- prs]
175 fixed = L.filter (\(_,l) -> L.length l == 1) $ possibilities
176 free = L.filter (\(_,l) -> L.length l > 1) $ possibilities
177 largest:rest = L.reverse $ L.sort $ msum $ map snd fixed
178 result = largest ‘div‘ (sum rest) in
179 case free of
180 [] -> if result == t then return p else Nothing
181 _ -> return p
182
183
184
185
186
187 reduce :: Partial -> Address -> Int -> Maybe Partial
188 reduce p@Partial{state} (row, col) value =
189 let size = fst $ fst $ M.findMax state
190 rowUnit = [(row, c) | c <- [1..size]]
191 colUnit = [(r, col) | r <- [1..size]] in
192 do let rowCandidates = [a | a <- rowUnit, value ‘elem‘ state M.! a]
193 rowReduced <- case rowCandidates of
194 [] -> Nothing
195 [adr] -> assign adr value p
196 _ -> return p
197 let colCandidates = [a | a <- colUnit, value ‘elem‘ state M.! a]
198 case colCandidates of
199 [] -> Nothing
200 [adr] -> assign adr value rowReduced
201 _ -> return rowReduced
202
203
204 applyAssertions :: Partial -> Maybe Partial
205 applyAssertions p@Partial{pUnits} =
206 let asserts = M.filter (\c -> op c == Asrt) pUnits

8

207 assocList = L.map (\(adr, c) -> (adr, target c)) $ M.toList asserts
in

208 foldM (\partial (a, val) -> assign a val partial) p assocList
209
210 solve :: String -> Maybe Partial
211 solve s = do p <- (applyAssertions . parsePuzzle . readKenken) s
212 search p
213
214 search :: Partial -> Maybe Partial
215 search p@Partial{state} =
216 let remaining = M.filter (\l -> (tail l) /= []) state in
217 if remaining == M.empty then return p
218 else let addresses = (M.toList remaining) :: [(Address, [Int])]
219 assocComp = \(_, c1) (_,c2) -> (L.length c1) ‘compare‘ (L.

length c2)
220 (nextAdr, candidateVals) = L.minimumBy assocComp addresses
221 searchAssign = \v -> assign nextAdr v p >>= \p2 -> search p2
222 assigned = map searchAssign candidateVals in
223 do result <- msum assigned
224 checkSolution result
225
226 checkSolution :: Partial -> Maybe Partial
227 checkSolution p@Partial{state, pUnits} =
228 if allCorrect then return p else Nothing
229 where allCorrect = and $ map satisfied $ map snd $ M.toList pUnits
230 satisfied Constraint{members, op, target} =
231 case op of
232 Add -> (sum [head $ state M.! member | member <- members]) ==

target
233 Mul -> (product [head $ state M.! member | member <- members

]) == target
234 _ -> True
235
236 showSolution :: Maybe Partial -> IO ()
237 showSolution (Just sol) = do putStrLn $ show [v | (_, [v]) <- M.toAscList

$ state sol]
238 showSolution (Nothing) = do putStrLn $ "No Solution Found"
239
240 parseSolutionString :: String -> [Int]
241 parseSolutionString "" = []
242 parseSolutionString (’,’:rest) = parseSolutionString rest
243 parseSolutionString (x:rest) = (read (x:"")) : (parseSolutionString rest)
244
245 readSolutionFile :: String -> IO [Int]
246 readSolutionFile sFile = do sol <- readFile sFile
247 return $ parseSolutionString sol

Main.hs

1 module Main where
2
3 import Kenken (solve)
4 import Control.Parallel.Strategies (parMap, rpar)
5 import Data.Maybe (isJust)
6 import System.IO (readFile)
7 import System.Environment (getArgs)
8
9 main :: IO ()

10 main = do puzzles <- getArgs >>= \[f] -> lines <$> readFile f

9

11 let solutions = parMap rpar solve puzzles
12 print $ length $ filter isJust $ solutions

KenkenTest.hs

1 import Test.Hspec
2 import Test.QuickCheck
3 import Control.Exception (evaluate)
4 import qualified Kenken as K
5 import qualified Data.Map as M
6 import qualified Data.Set as S
7 import Data.Maybe (fromMaybe, isJust)
8 import Control.Monad (msum)
9

10
11
12 main :: IO ()
13 main = hspec $ do
14 describe "Kenken" $ do
15 describe "translate" $ do
16
17 it "A1 is top left" $ do
18 (K.translate "A1") ‘shouldBe‘ ((1, 1) :: K.Address)
19
20 it "translate puts letter as col" $ do
21 (K.translate "E9") ‘shouldBe‘ ((5, 9) :: K.Address)
22
23 describe "readKenken" $ do
24 it "simple example" $ do
25 (K.readKenken "#\t2;+\t3\tA1 B1;-\t1\tA2 B2") ‘shouldBe‘
26 ([K.Constraint {K.members = [(1,1), (2,1)], K.op = K.Add, K.

target = 3},
27 K.Constraint {K.members = [(1,2), (2,2)], K.op = K.Sub, K.

target = 1}],2)
28
29 describe "units" $ do
30 it "simple example units of (1,1)" $ do
31 let simplePuzzle = K.readKenken "#\t2;+\t3\tA1 B1;-\t1\tA2 B2"
32 constraintMap = K.units simplePuzzle
33 actualUnits = M.lookup (1,1) $ constraintMap in
34 actualUnits ‘shouldBe‘
35 Just K.Constraint {K.members = [(1,1), (2,1)], K.op = K.Add

, K.target = 3}
36 it "simple example units of (1,2)" $ do
37 let simplePuzzle = K.readKenken "#\t2;+\t3\tA1 B1;-\t1\tA2 B2"
38 constraintMap = K.units simplePuzzle
39 actualUnits = M.lookup (1,2) $ constraintMap in
40 actualUnits ‘shouldBe‘
41 Just K.Constraint {K.members = [(1,2), (2,2)], K.op = K.Sub

, K.target = 1}
42 it "simple example units of (2,1)" $ do
43 let simplePuzzle = K.readKenken "#\t2;+\t3\tA1 B1;-\t1\tA2 B2"
44 constraintMap = K.units simplePuzzle
45 actualUnits = M.lookup (2,1) $ constraintMap in
46 actualUnits ‘shouldBe‘
47 Just K.Constraint {K.members = [(1,1), (2,1)], K.op = K.Add

, K.target = 3}
48 it "simple example units of (2,2)" $ do
49 let simplePuzzle = K.readKenken "#\t2;+\t3\tA1 B1;-\t1\tA2 B2"

10

50 constraintMap = K.units simplePuzzle
51 actualUnits = M.lookup (2,2) $ constraintMap in
52 actualUnits ‘shouldBe‘
53 Just K.Constraint {K.members = [(1,2), (2,2)], K.op = K.Sub

, K.target = 1}
54
55 it "address not found" $ do
56 let simplePuzzle = K.readKenken "#\t2;+\t3\tA1 B1;-\t1\tA2 B2"
57 constraintMap = K.units simplePuzzle
58 actualUnits = M.lookup (3, 4) $ constraintMap in
59 actualUnits ‘shouldBe‘ Nothing
60
61 describe "trying solver" $ do
62 it "some 3s" $ do
63 let names = ["puzzles/3_" ++ show num ++ ".txt" | num <- [0..10]]
64 puzzles = map readFile names
65 solved = sequence $ map (\puzzIO -> fmap K.solve $ puzzIO)

puzzles
66 res = fmap (all isJust) solved in
67 res ‘shouldReturn‘ True
68 it "some 4s" $ do
69 let names = ["puzzles/4_" ++ show num ++ ".txt" | num <- [0..10]]
70 puzzles = map readFile names
71 solved = sequence $ map (\puzzIO -> fmap K.solve $ puzzIO)

puzzles
72 res = fmap (all isJust) solved in
73 res ‘shouldReturn‘ True
74 it "some 5s" $ do
75 let names = ["puzzles/5_" ++ show num ++ ".txt" | num <- [0..10]]
76 puzzles = map readFile names
77 solved = sequence $ map (\puzzIO -> fmap K.solve $ puzzIO)

puzzles
78 res = fmap (all isJust) solved in
79 res ‘shouldReturn‘ True
80 it "some 6s" $ do
81 let names = ["puzzles/6_" ++ show num ++ ".txt" | num <- [0..10]]
82 puzzles = map readFile names
83 solved = sequence $ map (\puzzIO -> fmap K.solve $ puzzIO)

puzzles
84 res = fmap (all isJust) solved in
85 res ‘shouldReturn‘ True
86 it "some 7s" $ do
87 let names = ["puzzles/7_" ++ show num ++ ".txt" | num <- [0..10]]
88 puzzles = map readFile names
89 solved = sequence $ map (\puzzIO -> fmap K.solve $ puzzIO)

puzzles
90 res = fmap (all isJust) solved in
91 res ‘shouldReturn‘ True
92
93 describe "correctness" $ do
94 it "a 3" $ do
95 let puzzle = "puzzles/3_58.txt"
96 solution = "solutions/3_58.txt"
97 actualM = fmap K.solve $ readFile $ puzzle
98 expectedM = K.readSolutionFile solution in
99 do expected <- expectedM

100 actual <- actualM
101 let res = msum $ map snd $ M.toList $ K.state $ fromMaybe

undefined actual

11

102 res ‘shouldBe‘ expected
103
104 it "a 4" $ do
105 let puzzle = "puzzles/4_58.txt"
106 solution = "solutions/4_58.txt"
107 actualM = fmap K.solve $ readFile $ puzzle
108 expectedM = K.readSolutionFile solution in
109 do expected <- expectedM
110 actual <- actualM
111 let res = msum $ map snd $ M.toList $ K.state $ fromMaybe

undefined actual
112 res ‘shouldBe‘ expected
113
114 it "a 5" $ do
115 let puzzle = "puzzles/5_58.txt"
116 solution = "solutions/5_58.txt"
117 actualM = fmap K.solve $ readFile $ puzzle
118 expectedM = K.readSolutionFile solution in
119 do expected <- expectedM
120 actual <- actualM
121 let res = msum $ map snd $ M.toList $ K.state $ fromMaybe

undefined actual
122 res ‘shouldBe‘ expected
123
124 it "a 6" $ do
125 let puzzle = "puzzles/6_58.txt"
126 solution = "solutions/6_58.txt"
127 actualM = fmap K.solve $ readFile $ puzzle
128 expectedM = K.readSolutionFile solution in
129 do expected <- expectedM
130 actual <- actualM
131 let res = msum $ map snd $ M.toList $ K.state $ fromMaybe

undefined actual
132 res ‘shouldBe‘ expected
133
134 it "a 7" $ do
135 let puzzle = "puzzles/7_58.txt"
136 solution = "solutions/7_58.txt"
137 actualM = fmap K.solve $ readFile $ puzzle
138 expectedM = K.readSolutionFile solution in
139 do expected <- expectedM
140 actual <- actualM
141 let res = msum $ map snd $ M.toList $ K.state $ fromMaybe

undefined actual
142 res ‘shouldBe‘ expected

12

	How it Works
	The KenKen Puzzle
	The Code
	Kenken.hs
	Main.hs

	Effects of Parallelism
	Code Listing

