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Introduction 

Problem 
The problem we set out to solve was the graph colouring problem:  
 
Given a graph with n vertices, find a way to assign a colour, given x colours, to each of the vertices such 
that no two adjacent vertices are of the same colour.  
 
For example, the graph below is a valid, 3-colour solution to our problem:  
 

 
 
We have provided both single-threaded and multithreaded solutions to this problem, and done an in-depth 
comparison of the performances between the two, along with a few other comparisons for problems we 
encountered along the way.  

Approach 
 
We have explored different algorithms to solve graph coloring problem and their potential for 
parallelization.  

1. The first uses backtracking. It sequentially try to assign a color, if it’s a valid coloring, to each 
vertex. If it succeed in assigning a color, we continue to the next node of the graph. If not, we step 
backtrack and try to find the next available coloring [6]. This approach takes in a fixed number of 
colours as an input.: 
 

G = read graph file 
Vertex = get a vertex from G 
Backtracking(G, colors_list, Vertex) 

 
Where Backtracking is a recursive function: 
For color in colors_list: 

If color is validColor for Vertex: 
Set color of Vertex to color 
If Backtracking(G, colors_list, Vertex+1) == True: 



Return True 
Otherwise unset color of Vertex  
 

 
2. The second method uses a simple greedy algorithm where for each vertex it finds the lowest 

allowed color for that vertex [5]: 
 

G = read graph file 
For each vertex in G do 

Assign smallest allowed color to vertex 
End-For  

 
3. The next method uses a greedy approach as well that is based on finding independent set. Since 

vertices in an independent set can be assigned the same color, the algorithm works by repeatedly 
finding an independent set; assigning color to them; then removes them from the graph [1]: 
 

G = read graph file 
U =  get all vertices of G 
G’ = G 
While G` is not empty do 

I = get independent set of G’ 
Color vertices in I 
U = U - I 
G’ = graph induced by U 

End-while  
 

where the induced subgraph includes the vertices in U and all the edges that connect vertices in U 
from the original edges in G [7] 
 

4. The last solution uses a divide-and-conquer approach, where the graph is partitioned, then 
coloured, then merged. For the divide-and-conquer approach, although we continued to colour 
using a greedy approach, we removed the restraint on the number of colours that the algorithm 
can use so that conflicts during merge can easily be resolved. The pseudocode below illustrates 
the approach we are taking:  

G= read graph file 
partition the graph 
for each partition, in parallel: 

colour the partition 
for partitions, in parallel: 

merge the partitions while resolving conflict 
 
Our goal for parallelization was to find a way to parallelize the single-threaded solutions and do a 
comparison in time taken to colour the graph. For backtracking and greedy algorithms we found little 



opportunity for parallelization; instead we opted to parallelize solving multiple graphs at the same time. 
For the last approach, the technique we followed was to colour each individual subgraph in parallel and 
then merge.  
 
The output of our both solutions is True, along with the colouring, if it is valid, or False if we’re unable to 
find one. Our hypothesis is that in both scenarios, time taken to find a valid solution would decrease; 
however, in the second scenario, where we are splitting the graph into multiple subgraphs, we would need 
an increased number of colours to find a valid solution. 

Testing 
In order to properly test our solution, there were a variety of methods needed, such as checking whether 
or not a graph is a valid colouring. In the sequential algorithm, none of these methods are parallelized, 
however, in the parallelized version, these methods have also been parallelized as they also contribute to 
performance. Each of these methods have been included in the appendix section of this paper. 
 
Our test data was acquired from the following sources:  

1. LinkedIn Engineering [2] 
2. Manually constructed graphs in our format by hand 

 
Once we had decided on a graph representation to use, scripts were written in order to transform graphs 
from the sources above to be used with our algorithm. This let us ensure that our sequential solution and 
test methods were correct to begin with, as we could compare with graphs we knew had a solution. 
Moreover, it let us test on graphs that had a variety of complexity, which let us better ensure our 
colourings were valid. Links to these data sets have been provided in the appendix.  



Running the Code 
We’ve structured our code in a way that lets you choose which algorithm to run, along with whether 
you’re operating on a file or a folder. The examples below show you how to run each of our algorithms. 
To run any algorithm in parallelized form, simply add “+RTS -NX” as runtime parameters, where X is the 
number of threads to run on.  
 
The sequence of commands below are a walk through of how to run each of our 

algorithms 

-- install dependencies 

./install.sh 

 

-- make project 

make 

 

-- Program usage 

Usage: graph_colouring <graph-{file/folder}name/> <number-of-colors> <algo: 

{divide-conquer/backtracking/indep-set/greedy}> <method: file/folder> 

<output-folder> 

 

-- greedy sequential approach 

./graph_colouring samples/CLIQUE_300.3color 3 greedy file results 

 

-- divide-and-conquer sequential approach 

./graph_colouring samples/CLIQUE_300.3color 300 divide-conquer file results 

 

-- divide-and-conquer parallel approach 

./graph_colouring samples/CLIQUE_300.3color 300 divide-conquer file results 

+RTS -N<X>  

 



-- independent set sequential approach 

./graph_colouring samples/CLIQUE_300.3color 300 indep-set file results  

 

-- independent set parallel approach 

./graph_colouring samples/CLIQUE_300.3color 300 indep-set file results +RTS 

-N<X>  

-- solve folder of graphs using greedy approach 

./graph_colouring test/ 4 greedy folder results +RTS -N1 -ls 

 
  



Results 
In order to come up with a detailed comparison, we tested with the following variables against both our 
algorithms:  

- Number of nodes in graph 
- Number of threads (1 thread in the sequential solution, N threads in the parallelized solution) 

 
Additionally, we split testing into two categories - the first being testing individually on graphs with a set 
number of nodes (300, 1800, 3000) and the second on a complete directory of graphs passed as an input 
parameter. Testing on the directory involved sequentially solving each graph in the sequential solution 
and outputting the result to an output directory; and solving each graph in parallel in the parallelized 
solution, and outputting the result to an output directory. In this scenario, we tested on graphs we knew 
had a solution in order to be able to ensure that a solution was found for each graph.  
 
For the parallel scenario where graphs are split into subgraphs, we gave a very high upper bound of 
colours available to use for conflict resolution. Since we were using a greedy backtracking approach, we 
knew the algorithm would only use colours as needed. The output files generated for each test contain the 
number of colours used to find a solution. Once again, this testing was conducted on graphs of fixed node 
sizes of 300, 1800, and 3000.  
 
Since we were unable to parallelize the purely greedy algorithm, we decided to test it against a folder of 
graphs instead of individual graphs. We used a folder of 50 graphs with a variety of node counts and 
complexity (Source: LinkedIn Engineering [2]) and first computed time to solve sequentially, and then in 
parallel (split by graphs to solve). 
 
Testing was conducted on a Mid 2019 Macbook Pro with a 2.6Ghz 6-Core Intel i7 and 16GB of RAM 
using the following files:  
 
300 nodes: CLIQUE_300_3.3color 
1800 nodes: BENCH_1800.3color 
3000 nodes: RAND_3000_3_80.3color 

Sequential Solution Benchmarks 

50-graph input folder  
Sequentially solving the graph input folder using our greedy-backtracking algorithm yielded the following 
results:  
 

Number of Files Time Taken (s) 



50 139.183 

Greedy-Backtracking Approach 
The following results show the performance of our sequential solution across graphs with 300, 1800, and 
3000 nodes. As seen below, in each case, only one thread is used in the execution of this task.  
 

 
 

Number of Nodes Time Taken (s) 

300 0.080 

1800 1.435 

3000 8.166 

Independent Set Approach 
 
The following results show the performance of our sequential solution across graphs with 300, 1800, and 
3000 nodes. As seen below, in each case, only one thread is used in the execution of this task.  

 

Number of Nodes Time Taken (s) 

300 0.181 

1800 10.84 

3000 112.811 



 

Divide-and-Conquer Approach 
The following results show the performance of our sequential solution across graphs with 300, 1800, and 
3000 nodes. As seen below, in each case, only one thread is used in the execution of this task.  
 

 
 

Number of Nodes Time Taken (s) 

300 0.185 

1800 28.078 

3000 148.924 

 
As seen from the results above, our divide-and-conquer approach is much slower than the greedy 
approach, however, we believe that this approach will have a better performance increase from 
parallelization than the greedy approach. We believe this approach is much slower because of the 
additional merge computation that’s required when merging the two coloured subgraphs.  



Parallelized Solution Benchmarks 
In order to effectively determine what to parallelize we studied chunks of our sequential approach and 
noticed that there were three main candidates 

1. Reading the graph 
2. Finding a solution to the graph 
3. Determining whether the graph is valid 

 
As previously mentioned, the parallelization techniques for each of our algorithms were as follows:  

1. Assign a colour in parallel and search with that input - for the greedy-backtracking approach 
2. Colour each partition of the graph in parallel - for the divide-and-conquer approach. The merge 

step also involves conflict resolution, which ensures post-merge that a solution is still valid. 

50-graph input folder  
As previously mentioned, we were unable to parallelize the greedy-backtracking algorithm itself. We 
decided to parallelize IO and use the algorithm to solve a folder of graphs instead of singular graphs. 
Solving the graphs in parallel in the input folder using our greedy-backtracking algorithm yielded the 
following results:  
 

Number of Files Number of Cores Time Taken (s) Speedup 

50 1 130.803 1.0 

50 2 50.888 2.57 

50 3 40.136 3.25 

50 4 36.138 3.62 

50 5 40.104 3.26 

50 6 50.129 2.61 

 
Compared to our sequential approach, the parallel approach gives us a 3.62x best case performance 
increase, but also effectively distributes work over the number of threads. As seen below, this 
parallelization is also quite evenly distributed over the number of threads we are operating on. 
 



 

Parallel Independent Set Approach 
 
The independent set graph coloring algorithm has four main routines: 

1. Find and independent set for a vertex in the graph -> I 
2. Update the list of vertices by removing from it the set of vertices in I -> U 
3. Color the set of vertices in I 
4. Create an induced subgraph from U 

 
Only 2, 3 and 4 can be parallelized, since all the subsequent steps depends on step 1.  
To parallelize step 4, we used map with parListChunk, to reduce the overhead of running map in parallel. 
From the results below, we can see there is no speed up gained by increasing the number of cores used. 
We hypothesize that  the reason is that the first step is the most time consuming part which can’t be 
parallelized. 
 

Number of Cores Number of Nodes Time Taken (s) Speedup 

1 300 0.181 1.0 

2 300 0.181 1.0 

3 300 0.181 1.0 

4 300 0.181 1.0 

5 300 0.181 1.0 

6 300 0.181 1.0 

 
 



Number of Cores Number of Nodes Time Taken (s) Speedup 

1 1800 10.84 1.0 

2 1800 10.691 1.01 

3 1800 10.621 1.02 

4 1800 10.562 1.03 

5 1800 10.741 1.01 

6 1800 10.691 1.01 

 
 

Number of Cores Number of Nodes Time Taken (s) Speedup 

1 3000 112.811 1.0 

2 3000 112.501 1.002 

3 3000 111.471 1.012 

4 3000 111.141 1.015 

5 3000 108.331 1.04 

6 3000 108.591 1.04 

 

 



Parallel Divide-and-Conquer Approach 
As previously mentioned, the divide and conquer approach works as follows: 

1. Break the graph into subgraphs 
2. Colour each part individually (in parallel) 
3. Merge the subgraphs (should be done in parallel, need to optimize this) 

For our parallel strategy, we decided to use static partitioning in the divide and conquer approach to 
ensure we are able to write and test a merge function that resolves conflicts as expected. With dynamic 
partitioning, we found that our merge function was not able to effectively resolve conflicts in colours, 
leading to an incorrect colouring.  Our assumption is that a x2 partitioning should get us almost double the 
performance. Note: A minimal number colouring is not possible in this solution (which was three on the 
graphs we used for testing this) because of the conflict resolution that is needed during subgraph merge.  
 

Number of Threads Number of Nodes Time Taken (s) Speedup 

1 300 0.201 1.00 

2 300 0.169 1.12 

3 300 0.174 1.15 

4 300 0.143 1.41 

5 300 0.158 1.27 

6 300 0.138 1.46 

 

Number of Threads Number of Nodes Time Taken (s) Speedup 

1 1800 29.245 1.00 

2 1800 27.400 1.07 

3 1800 27.370 1.07 

4 1800 26.835 1.09 

5 1800 27.788 1.05 

6 1800 26.215 1.12 

 
 

Number of Threads Number of Nodes Time Taken (s) Speedup 

1 3000 153.365 1.00 



2 3000 139.396 1.10 

3 3000 133.767 1.10 

4 3000 136.388 1.15 

5 3000 110.431 1.39 

6 3000 109.273 1.40 

 
As seen in the data above, there is an improvement in performance as threads increase, however, not to 
the degree we were expecting. Looking at the 300 node graph sample set, we get a 1.5x best case 
performance increase, compared to 1.1x best case performance increase in the 1800 node graph case and a 
1.4x best case performance increase in the 3000 node case. 
 
The profiling below answered our question - the reason our performance wasn’t increasing as expected 
was because of the “merge” function, where subgraphs are merged and colouring conflicts on adjacent 
nodes are resolved. As seen below, our intentional use of static partitioning was working as expected, 
threads are created as the graph is split into two subgraphs, however, our expectation was that our merge 
would occur on the parent thread that sparked the creation (i.e. as we work up the recursive tree). From 
the profiling below, it can be seen that merge only occurs on the initial execution thread.  
 

 
 
There were many approaches we tried to solve this problem, however, none succeeded, leaving our 
performance increase at 1.3x (averaged over all graphs).. Our expectation is that by finding a way to 
merge on the parallel thread itself will bring us close to the 2x performance increase mark that we were 
expecting with the divide and conquer approach. 



 
Another issue we noticed in our parallel solution were the number of sparks we were creating vs. 
converting. Only 2% of the sparks were being converted - our assumption is that this is also because of 
the lack of parallelism in the merge operation.  
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III - Code 
 
A repository of all our code, including test samples,  can be found here:  
 
install.sh - This file installs all required dependencies 
stack install parallel 

stack install monad-par 

stack install random-shuffle 

 
MakeFile - This file compiles our project 
ifndef PNAME 

override PNAME = graph_colouring.hs 

endif 

 

all: 

rm -rf output 

mkdir output 

stack ghc -- -O2 -threaded -rtsopts -eventlog $(PNAME) 

 
Utils.hs - This file contains utility functions shared across the project 
 

module Utils 

( Node, 

  Color, 

  AdjList, 

  Graph, 

  response, 

  wordsWhen, 

  writeToFile, 

  readGraphFile, 

  isValidFile, 

  getColor, 

  getColors, 



  getNeighbors, 

  setColor, 

  validColor, 

  allVerticesColored, 

  checkValidColored, 

  checkValidColoredPar, 

  colorAGraph, 

  findClashingNodes, 

  colorNode, 

  setColors, 

  getAllColors 

) where 

 

import qualified Data.Map as Map 

import System.IO(Handle, hIsEOF, hGetLine, withFile,IOMode(ReadMode)) 

import Data.Maybe as Maybe 

import Control.Parallel.Strategies (rpar, runEval) 

 

-- Type to define a Graph as adjecncy list 

type Node = String 

type Color = Int 

type AdjList = [Node] 

type Graph = Map.Map(Node) (AdjList, Color) 

 

colorAGraph :: FilePath -> (Graph -> Maybe Graph) -> String -> String -> IO String 

colorAGraph graph_file algo outFolder inFolder = do 

              let graph_file_name = last $ wordsWhen (=='/') graph_file 

              let outFile = outFolder ++ "/" ++ graph_file_name ++ "_out" 

              g <- readGraphFile $ inFolder ++ graph_file 

              putStrLn ("coloring " ++ graph_file ++ " .. ") 

              let output =  checkValidColored $ algo g 

              let max_color = maximum $ getAllColors output 

              response output graph_file 



              writeToFile output max_color outFile 

              return $ "done coloring " ++ graph_file ++ " with " ++ (show max_color) 

 

-- check if <graph> from <fname> is {un}successfully colored and prints out a message 

response :: Maybe Graph -> String -> IO () 

response graph fname = case graph of 

                    Just _ -> putStrLn ("Successfully coloured graph " ++ fname) 

                    Nothing ->  putStrLn ("Unable to colour graph "  ++ fname) 

 

-- write <graph> to <fout> 

writeToFile :: Maybe Graph -> Color -> String -> IO () 

writeToFile graph color fout = case graph of 

                      Just a -> do writeFile fout ("true ncolors " ++ (show color) ++ "\n"++ 

printSolution a) 

                      Nothing -> do writeFile fout "false\n" 

 

readGraphFile :: String -> IO Graph 

readGraphFile filename  = withFile filename ReadMode $ \handle -> loop handle readGraphLine 

Map.empty 

 

readGraphLine :: Handle -> Graph -> IO Graph 

readGraphLine handle g = do args  <- (wordsWhen (==':')) <$> hGetLine handle 

                            case args of 

                              [node, adj] -> return $ Map.insert node (readAdjList adj, 0) g 

                              _           -> return g 

 

isValidFile :: FilePath -> Bool 

isValidFile f =  "3color" /=  last ( wordsWhen (=='.') (show f) ) && f /= "." && f /= ".." 

 

loop :: Handle -> (Handle -> Graph -> IO Graph) -> Graph -> IO Graph 

loop h f g = do  

              outgraph <- f h g 

              eof <- hIsEOF h 



              if eof then do return outgraph 

              else do (loop h f outgraph) >>= (\y -> return y) 

 

wordsWhen :: (Char -> Bool) -> String -> [String] 

wordsWhen p s = case dropWhile p s of 

                    "" -> [] 

                    s' -> w : wordsWhen p s'' 

                         where (w, s'') = break p s' 

-- color of a vertex 

-- e.g. color "A" g 

getColor :: Node -> Graph -> Color 

getColor n g = case Map.lookup n g of 

                 Just v -> (snd v) 

                 Nothing -> 0 

 

-- given a list of nodes and a graph, retrieve all colour assignments to the node 

getColors :: [Node] -> Graph -> [Color] 

getColors [] _ = [] 

getColors (x:xs) g = getColor x g : getColors xs g 

 

-- gets all neighbors for a node in a graph 

getNeighbors :: Node -> Graph -> AdjList 

getNeighbors n g = case Map.lookup n g of 

                 Just v -> (fst v) 

                 Nothing -> [] 

 

getAllColors :: Maybe Graph -> [Color] 

getAllColors g = case g of 

                  Just gr -> map (\(k, v) -> snd v) $Map.toList gr 

                  Nothing -> [] 

 

-- assings a colour to a single node in the graph 

setColor :: Graph -> Node -> Color -> Graph 



setColor g n c = case Map.lookup n g of 

                  Just v -> Map.insert n ((fst v), c) g 

                  Nothing -> g 

 

 

readAdjList :: String ->  AdjList 

readAdjList x = wordsWhen (==',') x 

 

-- checks if this color can be assigned to a vertex 

-- e.g. validColor "A" 1 g 

validColor :: Node -> Graph -> Color -> Bool 

validColor n g c = c `notElem` getColors (getNeighbors n g) g 

 

printSolution :: Graph -> String 

printSolution g = unlines $ map (\n -> n ++ ':' : showColor n ) nodes 

                  where nodes = Map.keys g 

                        showColor n = show $ getColor n g 

 

-- checks if all vertices have been coloured 

-- e.g. allVerticesColored g 

allVerticesColored :: Graph -> Bool 

allVerticesColored g = 0 `notElem` getColors (Map.keys g) g 

 

checkValidColoredPar :: Maybe Graph -> Maybe Graph 

checkValidColoredPar g = case g of 

                  Nothing -> Nothing 

                  Just a -> checkValidColoredPar' (Map.keys a) a 

 

checkValidColoredPar' :: [Node] -> Graph -> Maybe Graph 

checkValidColoredPar' [] _ = Nothing 

checkValidColoredPar' [n] g | getColor n g `notElem` getColors (getNeighbors n g) g = Just g 

                      | otherwise = Nothing 

checkValidColoredPar' nodes g  



  | runEval $ do 

      front <- rpar $ checkValidColoredPar' first g 

      back <- rpar $ checkValidColoredPar' second g 

      return (Maybe.isJust front && Maybe.isJust back) = Just g 

  | otherwise = Nothing 

  where (first, second) = splitAt (length nodes `div` 2) nodes 

 

checkValidColored :: Maybe Graph -> Maybe Graph 

checkValidColored g = case g of 

                  Nothing -> Nothing 

                  Just a -> checkValidColored' (Map.keys a) a 

 

checkValidColored' :: [Node] -> Graph -> Maybe Graph 

checkValidColored' [] g = Just g 

checkValidColored' (n:ns) g  

    | getColor n g `notElem` getColors (getNeighbors n g) g = checkValidColored' ns g 

    | otherwise = Nothing 

 

 

findClashingNodes :: Node -> Graph -> [Node] 

findClashingNodes n g = [ x | x <- (getNeighbors n g), (getColor n g) == (getColor x g) ] 

 

 

colorNode :: Node -> [Color] -> Graph -> Color 

colorNode _ [] _ = 0 

colorNode n (x:xs) g = if validColor n g x then do x 

                              else do colorNode n xs g 

 

setColors :: Graph -> [Node] -> Color -> Graph 

setColors g [] _ = g 

setColors g [n] c = setColor g n c 

setColors g (n:ns) c = setColors (setColor g n c) ns c  

 



 

GraphColoringAlgos.hs - This file contains all the various graph colouring algorithms we came up with, 
including how we parallelized 
module GraphColoringAlgo 

( backtracking, 

  colorIndependent, 

  divideConquerPar, 

  greedy 

) where 

 

import Utils 

import Data.List (sort) 

import qualified Data.Map as Map 

import Control.Parallel.Strategies (rpar, rseq, runEval, parListChunk, using, parMap, 

parBuffer) 

 

backtracking :: [Node] -> [Color] -> [Color] -> Graph -> Maybe Graph 

backtracking _ [] _ g = Just g 

backtracking [] _ _ g = Just g 

backtracking _ _ [] _ = Nothing 

backtracking nodes@(n:ns) colors (c:cs) g 

      | validColor n g c = case (backtracking ns colors colors $ setColor g n c) of 

                              Just gout -> Just gout 

                              Nothing -> backtracking nodes colors cs g 

      | otherwise = backtracking nodes colors cs g 

 

greedy :: [Node] -> [Color] -> [Color] -> Graph -> Maybe Graph 

greedy _ [] _ g = Just g 

greedy [] _ _ g = Just g 

greedy _ _ [] _ = Nothing 

greedy nodes@(n:ns) colors (c:cs) g 

      | validColor n g c = greedy ns colors colors $ setColor g n c 

      | otherwise = greedy nodes colors cs g 



 

inducedGraph :: Graph -> [Node] -> Graph 

inducedGraph g nodes =  Map.fromList ( map (\x -> (x, (adj x, 0))) nodes `using` parListChunk 

(length nodes `div` 2) rseq) 

                            where adj = (\nx -> filter (\y -> y `elem` nodes) $ getNeighbors 

nx g) 

 

 

independentSet :: Graph -> Graph -> [Node] -> [Node] -> [Node] 

independentSet _ _ [] i = i 

independentSet g ig u@(x:_) i | length (Map.keys ig) == 0 = i 

                               | otherwise = independentSet g ig_new u_new i_new 

                                             where i_new = x : i 

                                                   u_new = filter (\y -> y `notElem` (x: 

getNeighbors x g)) u 

                                                   ig_new = inducedGraph g  u_new 

  

colorNodes :: Graph -> [Node] -> Color -> Graph 

colorNodes g [] _ = g 

colorNodes g nodes c = Map.union (fst pr) (Map.mapWithKey (\_ x -> (fst x, c)) (snd pr)) 

                       where pr = Map.partitionWithKey (\k _ -> k `notElem` nodes) g 

 

colorIndependent :: Graph -> Graph -> [Node] -> [Color] -> Maybe Graph 

colorIndependent g _ _ [] = Just g 

colorIndependent g _ [] _ = Just g 

colorIndependent g ig u (c:cs) | length (Map.keys ig) == 0 = Just g 

                               | otherwise = runEval $ do  

                                            i_new <- rseq $ independentSet ig ig u_nodes []  

                                            u_new <- rpar $ filter (\y -> y `notElem` i_new) 

u 

                                            colored_g <- rpar $ colorNodes g i_new c 

                                            ig_new <- rpar $ inducedGraph g u_new 



                                            return $ colorIndependent colored_g ig_new u_new 

cs 

                                            where u_nodes = Map.keys ig 

 

divideConquerPar :: [Node] -> Graph -> Maybe Graph 

divideConquerPar n g = divideConquerPar' n [1..(length (Map.keys g))] g 

 

divideConquerPar' :: [Node] -> [Color] -> Graph -> Maybe Graph 

divideConquerPar' _ [] g = Just g 

divideConquerPar' [] _ g = Just g 

divideConquerPar' [n] colors g 

  | allVerticesColored g = Just g 

  | otherwise =  

      if nodeColor > 0 then do 

          Just $ setColor g n nodeColor 

      else do 

          Nothing 

      where nodeColor = colorNode n colors g 

divideConquerPar' nodes colors g 

  | allVerticesColored g = Just g 

  | otherwise = runEval $ do 

    front <- rpar $ divideConquerPar' first colors $ subGraph first g Map.empty 

    back <- rpar $ divideConquerPar' second colors $ subGraph second g Map.empty 

    case (front, back) of  

      (Just g, Nothing) -> return $ Just $ g 

      (Nothing, Just g) -> return $ Just $ g 

      (Just g, Just y)  -> return $ Just $ merge (Map.keys (Map.union g y)) colors $ 

Map.union g y 

      _                 -> return $ Nothing 

    where (first, second) = splitAt (length nodes `div` 2) nodes 

 

merge :: [Node] -> [Color] -> Graph -> Graph 

merge [] _ g = g 



merge [x] colors g = setColors g (findClashingNodes x g) $ head updateColors  

  where updateColors = filter (validColor x g) colors 

merge (x:xs) colors g = merge xs updateColors $ setColors g (findClashingNodes x g) $ head 

updateColors 

  where updateColors = filter (validColor x g) colors 

 

subGraph :: [Node] -> Graph -> Graph -> Graph  

subGraph [] _ x = x 

subGraph [n] g x = Map.union x (Map.insert n ((getNeighbors n g), (getColor n g)) x) 

subGraph (n:ns) g x = subGraph ns g (Map.union x (Map.insert n ((getNeighbors n g), (getColor 

n g)) x)) 

 

 

 
graph_colouring.hs - This is the main driver file for our solution 
-- stack ghc -- --make -Wall -O2 -threaded -rtsopts -eventlog graph_colouring.hs 

import Utils 

import GraphColoringAlgo 

 

import System.Exit(die) 

import System.Environment(getArgs, getProgName) 

 

import qualified Data.Map as Map 

import Control.Monad.IO.Class (liftIO) 

import Control.Monad.Par.Combinator (parMapM) 

import Control.Monad.Par.IO (runParIO) 

import System.Directory 

import System.Random.Shuffle 

 

main :: IO () 

main = do 

  args <- getArgs 

  pn <- getProgName 



  let errorMsg = "Usage: " ++ pn ++ " <input-{filename/foldername}> <number-of-colors> <algo: 

{divide-conquer/backtracking/IndepSet/greedy}> <method: file/folder> <output-folder>" 

  case args of 

    [graph_file, number_colours, algo, method, outFolder] -> do 

      func <- case algo of 

        "backtracking" -> do 

                let colours = read number_colours 

                return (\g -> backtracking (Map.keys g) [1..colours] [1..colours] g) 

        "indep-set" -> return (\g -> colorIndependent g g (Map.keys g) [1..]) 

        "greedy" -> return (\g -> backtracking (Map.keys g) [1..] [1..] g) 

        "divide-conquer" -> do  

          return (\g -> divideConquerPar (Map.keys g) g) 

      case method of 

        "file" -> do 

          msg <- colorAGraph graph_file func outFolder "" 

          putStrLn msg 

        "folder" -> do 

          let inFolder = graph_file 

          filepaths <- filter isValidFile <$> getDirectoryContents inFolder 

          filepathShuffled <- shuffleM filepaths 

          putStrLn $ "coloring: \n" ++  (unlines filepathShuffled) 

          responses <- runParIO $ parMapM (\f -> liftIO $ colorAGraph f func outFolder 

inFolder) filepathShuffled 

          mapM_ putStrLn responses 

        _ -> do  

          die errorMsg 

  

    _ -> do  

          die errorMsg 

 


