
Parallel Functional Programming
Columbia University in the City of New York

Parallel Graph Coloring in Haskell

TEAM

Haneen Abdulrashid Mohammed ham2156
Ishan Guru ig2333

Introduction 3
Problem 3
Approach 3
Testing 5

Running the Code 6

Results 8
Sequential Solution Benchmarks 8

50-graph input folder 8
Greedy-Backtracking Approach 9
Independent Set Approach 9
Divide-and-Conquer Approach 10

Parallelized Solution Benchmarks 11
50-graph input folder 11
Parallel Independent Set Approach 12
Parallel Divide-and-Conquer Approach 14

Appendix 17
I - References 17
II - Graph Data Sets 18
III - Code 19

Introduction

Problem
The problem we set out to solve was the graph colouring problem:

Given a graph with n vertices, find a way to assign a colour, given x colours, to each of the vertices such
that no two adjacent vertices are of the same colour.

For example, the graph below is a valid, 3-colour solution to our problem:

We have provided both single-threaded and multithreaded solutions to this problem, and done an in-depth
comparison of the performances between the two, along with a few other comparisons for problems we
encountered along the way.

Approach

We have explored different algorithms to solve graph coloring problem and their potential for
parallelization.

1. The first uses backtracking. It sequentially try to assign a color, if it’s a valid coloring, to each
vertex. If it succeed in assigning a color, we continue to the next node of the graph. If not, we step
backtrack and try to find the next available coloring [6]. This approach takes in a fixed number of
colours as an input.:

G = read graph file
Vertex = get a vertex from G
Backtracking(G, colors_list, Vertex)

Where Backtracking is a recursive function:
For color in colors_list:

If color is validColor for Vertex:
Set color of Vertex to color
If Backtracking(G, colors_list, Vertex+1) == True:

Return True
Otherwise unset color of Vertex

2. The second method uses a simple greedy algorithm where for each vertex it finds the lowest

allowed color for that vertex [5]:

G = read graph file
For each vertex in G do

Assign smallest allowed color to vertex
End-For

3. The next method uses a greedy approach as well that is based on finding independent set. Since

vertices in an independent set can be assigned the same color, the algorithm works by repeatedly
finding an independent set; assigning color to them; then removes them from the graph [1]:

G = read graph file
U = get all vertices of G
G’ = G
While G` is not empty do

I = get independent set of G’
Color vertices in I
U = U - I
G’ = graph induced by U

End-while

where the induced subgraph includes the vertices in U and all the edges that connect vertices in U
from the original edges in G [7]

4. The last solution uses a divide-and-conquer approach, where the graph is partitioned, then
coloured, then merged. For the divide-and-conquer approach, although we continued to colour
using a greedy approach, we removed the restraint on the number of colours that the algorithm
can use so that conflicts during merge can easily be resolved. The pseudocode below illustrates
the approach we are taking:

G= read graph file
partition the graph
for each partition, in parallel:

colour the partition
for partitions, in parallel:

merge the partitions while resolving conflict

Our goal for parallelization was to find a way to parallelize the single-threaded solutions and do a
comparison in time taken to colour the graph. For backtracking and greedy algorithms we found little

opportunity for parallelization; instead we opted to parallelize solving multiple graphs at the same time.
For the last approach, the technique we followed was to colour each individual subgraph in parallel and
then merge.

The output of our both solutions is True, along with the colouring, if it is valid, or False if we’re unable to
find one. Our hypothesis is that in both scenarios, time taken to find a valid solution would decrease;
however, in the second scenario, where we are splitting the graph into multiple subgraphs, we would need
an increased number of colours to find a valid solution.

Testing
In order to properly test our solution, there were a variety of methods needed, such as checking whether
or not a graph is a valid colouring. In the sequential algorithm, none of these methods are parallelized,
however, in the parallelized version, these methods have also been parallelized as they also contribute to
performance. Each of these methods have been included in the appendix section of this paper.

Our test data was acquired from the following sources:

1. LinkedIn Engineering [2]
2. Manually constructed graphs in our format by hand

Once we had decided on a graph representation to use, scripts were written in order to transform graphs
from the sources above to be used with our algorithm. This let us ensure that our sequential solution and
test methods were correct to begin with, as we could compare with graphs we knew had a solution.
Moreover, it let us test on graphs that had a variety of complexity, which let us better ensure our
colourings were valid. Links to these data sets have been provided in the appendix.

Running the Code
We’ve structured our code in a way that lets you choose which algorithm to run, along with whether
you’re operating on a file or a folder. The examples below show you how to run each of our algorithms.
To run any algorithm in parallelized form, simply add “+RTS -NX” as runtime parameters, where X is the
number of threads to run on.

The sequence of commands below are a walk through of how to run each of our

algorithms

-- install dependencies

./install.sh

-- make project

make

-- Program usage

Usage: graph_colouring <graph-{file/folder}name/> <number-of-colors> <algo:

{divide-conquer/backtracking/indep-set/greedy}> <method: file/folder>

<output-folder>

-- greedy sequential approach

./graph_colouring samples/CLIQUE_300.3color 3 greedy file results

-- divide-and-conquer sequential approach

./graph_colouring samples/CLIQUE_300.3color 300 divide-conquer file results

-- divide-and-conquer parallel approach

./graph_colouring samples/CLIQUE_300.3color 300 divide-conquer file results

+RTS -N<X>

-- independent set sequential approach

./graph_colouring samples/CLIQUE_300.3color 300 indep-set file results

-- independent set parallel approach

./graph_colouring samples/CLIQUE_300.3color 300 indep-set file results +RTS

-N<X>

-- solve folder of graphs using greedy approach

./graph_colouring test/ 4 greedy folder results +RTS -N1 -ls

Results
In order to come up with a detailed comparison, we tested with the following variables against both our
algorithms:

- Number of nodes in graph
- Number of threads (1 thread in the sequential solution, N threads in the parallelized solution)

Additionally, we split testing into two categories - the first being testing individually on graphs with a set
number of nodes (300, 1800, 3000) and the second on a complete directory of graphs passed as an input
parameter. Testing on the directory involved sequentially solving each graph in the sequential solution
and outputting the result to an output directory; and solving each graph in parallel in the parallelized
solution, and outputting the result to an output directory. In this scenario, we tested on graphs we knew
had a solution in order to be able to ensure that a solution was found for each graph.

For the parallel scenario where graphs are split into subgraphs, we gave a very high upper bound of
colours available to use for conflict resolution. Since we were using a greedy backtracking approach, we
knew the algorithm would only use colours as needed. The output files generated for each test contain the
number of colours used to find a solution. Once again, this testing was conducted on graphs of fixed node
sizes of 300, 1800, and 3000.

Since we were unable to parallelize the purely greedy algorithm, we decided to test it against a folder of
graphs instead of individual graphs. We used a folder of 50 graphs with a variety of node counts and
complexity (Source: LinkedIn Engineering [2]) and first computed time to solve sequentially, and then in
parallel (split by graphs to solve).

Testing was conducted on a Mid 2019 Macbook Pro with a 2.6Ghz 6-Core Intel i7 and 16GB of RAM
using the following files:

300 nodes: CLIQUE_300_3.3color
1800 nodes: BENCH_1800.3color
3000 nodes: RAND_3000_3_80.3color

Sequential Solution Benchmarks

50-graph input folder
Sequentially solving the graph input folder using our greedy-backtracking algorithm yielded the following
results:

Number of Files Time Taken (s)

50 139.183

Greedy-Backtracking Approach
The following results show the performance of our sequential solution across graphs with 300, 1800, and
3000 nodes. As seen below, in each case, only one thread is used in the execution of this task.

Number of Nodes Time Taken (s)

300 0.080

1800 1.435

3000 8.166

Independent Set Approach

The following results show the performance of our sequential solution across graphs with 300, 1800, and
3000 nodes. As seen below, in each case, only one thread is used in the execution of this task.

Number of Nodes Time Taken (s)

300 0.181

1800 10.84

3000 112.811

Divide-and-Conquer Approach
The following results show the performance of our sequential solution across graphs with 300, 1800, and
3000 nodes. As seen below, in each case, only one thread is used in the execution of this task.

Number of Nodes Time Taken (s)

300 0.185

1800 28.078

3000 148.924

As seen from the results above, our divide-and-conquer approach is much slower than the greedy
approach, however, we believe that this approach will have a better performance increase from
parallelization than the greedy approach. We believe this approach is much slower because of the
additional merge computation that’s required when merging the two coloured subgraphs.

Parallelized Solution Benchmarks
In order to effectively determine what to parallelize we studied chunks of our sequential approach and
noticed that there were three main candidates

1. Reading the graph
2. Finding a solution to the graph
3. Determining whether the graph is valid

As previously mentioned, the parallelization techniques for each of our algorithms were as follows:

1. Assign a colour in parallel and search with that input - for the greedy-backtracking approach
2. Colour each partition of the graph in parallel - for the divide-and-conquer approach. The merge

step also involves conflict resolution, which ensures post-merge that a solution is still valid.

50-graph input folder
As previously mentioned, we were unable to parallelize the greedy-backtracking algorithm itself. We
decided to parallelize IO and use the algorithm to solve a folder of graphs instead of singular graphs.
Solving the graphs in parallel in the input folder using our greedy-backtracking algorithm yielded the
following results:

Number of Files Number of Cores Time Taken (s) Speedup

50 1 130.803 1.0

50 2 50.888 2.57

50 3 40.136 3.25

50 4 36.138 3.62

50 5 40.104 3.26

50 6 50.129 2.61

Compared to our sequential approach, the parallel approach gives us a 3.62x best case performance
increase, but also effectively distributes work over the number of threads. As seen below, this
parallelization is also quite evenly distributed over the number of threads we are operating on.

Parallel Independent Set Approach

The independent set graph coloring algorithm has four main routines:

1. Find and independent set for a vertex in the graph -> I
2. Update the list of vertices by removing from it the set of vertices in I -> U
3. Color the set of vertices in I
4. Create an induced subgraph from U

Only 2, 3 and 4 can be parallelized, since all the subsequent steps depends on step 1.
To parallelize step 4, we used map with parListChunk, to reduce the overhead of running map in parallel.
From the results below, we can see there is no speed up gained by increasing the number of cores used.
We hypothesize that the reason is that the first step is the most time consuming part which can’t be
parallelized.

Number of Cores Number of Nodes Time Taken (s) Speedup

1 300 0.181 1.0

2 300 0.181 1.0

3 300 0.181 1.0

4 300 0.181 1.0

5 300 0.181 1.0

6 300 0.181 1.0

Number of Cores Number of Nodes Time Taken (s) Speedup

1 1800 10.84 1.0

2 1800 10.691 1.01

3 1800 10.621 1.02

4 1800 10.562 1.03

5 1800 10.741 1.01

6 1800 10.691 1.01

Number of Cores Number of Nodes Time Taken (s) Speedup

1 3000 112.811 1.0

2 3000 112.501 1.002

3 3000 111.471 1.012

4 3000 111.141 1.015

5 3000 108.331 1.04

6 3000 108.591 1.04

Parallel Divide-and-Conquer Approach
As previously mentioned, the divide and conquer approach works as follows:

1. Break the graph into subgraphs
2. Colour each part individually (in parallel)
3. Merge the subgraphs (should be done in parallel, need to optimize this)

For our parallel strategy, we decided to use static partitioning in the divide and conquer approach to
ensure we are able to write and test a merge function that resolves conflicts as expected. With dynamic
partitioning, we found that our merge function was not able to effectively resolve conflicts in colours,
leading to an incorrect colouring. Our assumption is that a x2 partitioning should get us almost double the
performance. Note: A minimal number colouring is not possible in this solution (which was three on the
graphs we used for testing this) because of the conflict resolution that is needed during subgraph merge.

Number of Threads Number of Nodes Time Taken (s) Speedup

1 300 0.201 1.00

2 300 0.169 1.12

3 300 0.174 1.15

4 300 0.143 1.41

5 300 0.158 1.27

6 300 0.138 1.46

Number of Threads Number of Nodes Time Taken (s) Speedup

1 1800 29.245 1.00

2 1800 27.400 1.07

3 1800 27.370 1.07

4 1800 26.835 1.09

5 1800 27.788 1.05

6 1800 26.215 1.12

Number of Threads Number of Nodes Time Taken (s) Speedup

1 3000 153.365 1.00

2 3000 139.396 1.10

3 3000 133.767 1.10

4 3000 136.388 1.15

5 3000 110.431 1.39

6 3000 109.273 1.40

As seen in the data above, there is an improvement in performance as threads increase, however, not to
the degree we were expecting. Looking at the 300 node graph sample set, we get a 1.5x best case
performance increase, compared to 1.1x best case performance increase in the 1800 node graph case and a
1.4x best case performance increase in the 3000 node case.

The profiling below answered our question - the reason our performance wasn’t increasing as expected
was because of the “merge” function, where subgraphs are merged and colouring conflicts on adjacent
nodes are resolved. As seen below, our intentional use of static partitioning was working as expected,
threads are created as the graph is split into two subgraphs, however, our expectation was that our merge
would occur on the parent thread that sparked the creation (i.e. as we work up the recursive tree). From
the profiling below, it can be seen that merge only occurs on the initial execution thread.

There were many approaches we tried to solve this problem, however, none succeeded, leaving our
performance increase at 1.3x (averaged over all graphs).. Our expectation is that by finding a way to
merge on the parallel thread itself will bring us close to the 2x performance increase mark that we were
expecting with the divide and conquer approach.

Another issue we noticed in our parallel solution were the number of sparks we were creating vs.
converting. Only 2% of the sparks were being converted - our assumption is that this is also because of
the lack of parallelism in the merge operation.

Appendix

I - References
[1] Gebremedhin, A. H. (1999). Parallel graph coloring. UNIVERSITY M Thesis University of Bergen
Norway Spring.

[2] Fender, Walter. “The Graph Coloring Throwdown: Haskell vs. C++ vs. Java.” LinkedIn Engineering,
Sept. 2011,
engineering.linkedin.com/49/linkedin-coding-competitions-graph-coloring-haskell-c-and-java.

[3] Normann, Per. Parallel Graph Coloring on Multi-Core CPUs . June 2014,
Paper available on: www.diva-portal.org/smash/get/diva2:730761/FULLTEXT01.pdf.

[4] Anderson, Loren. “ Edge Grundy Numbers of P3Pn and P3Cn.” International Journal of
Mathematics and Computer Science, 8 Nov. 2015.

[5] Graph Coloring: Set 2 (Greedy Algorithm). (2018, May 1). Retrieved December 18, 2019, from
https://www.geeksforgeeks.org/graph-coloring-set-2-greedy-algorithm/.

[6] m Coloring Problem: Backtracking-5. (2019, December 5). Retrieved December 18, 2019, from
https://www.geeksforgeeks.org/m-coloring-problem-backtracking-5/.

[7] Induced subgraph. (2019, February 5). Retrieved December 18, 2019, from
https://en.wikipedia.org/wiki/Induced_subgraph.

http://www.diva-portal.org/smash/get/diva2:730761/FULLTEXT01.pdf
https://www.geeksforgeeks.org/graph-coloring-set-2-greedy-algorithm/
https://www.geeksforgeeks.org/m-coloring-problem-backtracking-5/

II - Graph Data Sets
Fender, Walter. “The Graph Coloring Throwdown: Haskell vs. C++ vs. Java.” LinkedIn Engineering,
Sept. 2011,
engineering.linkedin.com/49/linkedin-coding-competitions-graph-coloring-haskell-c-and-java.

Graphs available on: https://github.com/cheftako/LinkedInThreeColorability/tree/master/samples

https://github.com/cheftako/LinkedInThreeColorability/tree/master/samples

III - Code

A repository of all our code, including test samples, can be found here:

install.sh - This file installs all required dependencies
stack install parallel

stack install monad-par

stack install random-shuffle

MakeFile - This file compiles our project
ifndef PNAME

override PNAME = graph_colouring.hs

endif

all:

rm -rf output

mkdir output

stack ghc -- -O2 -threaded -rtsopts -eventlog $(PNAME)

Utils.hs - This file contains utility functions shared across the project

module Utils

(Node,

 Color,

 AdjList,

 Graph,

 response,

 wordsWhen,

 writeToFile,

 readGraphFile,

 isValidFile,

 getColor,

 getColors,

 getNeighbors,

 setColor,

 validColor,

 allVerticesColored,

 checkValidColored,

 checkValidColoredPar,

 colorAGraph,

 findClashingNodes,

 colorNode,

 setColors,

 getAllColors

) where

import qualified Data.Map as Map

import System.IO(Handle, hIsEOF, hGetLine, withFile,IOMode(ReadMode))

import Data.Maybe as Maybe

import Control.Parallel.Strategies (rpar, runEval)

-- Type to define a Graph as adjecncy list

type Node = String

type Color = Int

type AdjList = [Node]

type Graph = Map.Map(Node) (AdjList, Color)

colorAGraph :: FilePath -> (Graph -> Maybe Graph) -> String -> String -> IO String

colorAGraph graph_file algo outFolder inFolder = do

 let graph_file_name = last $ wordsWhen (=='/') graph_file

 let outFile = outFolder ++ "/" ++ graph_file_name ++ "_out"

 g <- readGraphFile $ inFolder ++ graph_file

 putStrLn ("coloring " ++ graph_file ++ " .. ")

 let output = checkValidColored $ algo g

 let max_color = maximum $ getAllColors output

 response output graph_file

 writeToFile output max_color outFile

 return $ "done coloring " ++ graph_file ++ " with " ++ (show max_color)

-- check if <graph> from <fname> is {un}successfully colored and prints out a message

response :: Maybe Graph -> String -> IO ()

response graph fname = case graph of

 Just _ -> putStrLn ("Successfully coloured graph " ++ fname)

 Nothing -> putStrLn ("Unable to colour graph " ++ fname)

-- write <graph> to <fout>

writeToFile :: Maybe Graph -> Color -> String -> IO ()

writeToFile graph color fout = case graph of

 Just a -> do writeFile fout ("true ncolors " ++ (show color) ++ "\n"++

printSolution a)

 Nothing -> do writeFile fout "false\n"

readGraphFile :: String -> IO Graph

readGraphFile filename = withFile filename ReadMode $ \handle -> loop handle readGraphLine

Map.empty

readGraphLine :: Handle -> Graph -> IO Graph

readGraphLine handle g = do args <- (wordsWhen (==':')) <$> hGetLine handle

 case args of

 [node, adj] -> return $ Map.insert node (readAdjList adj, 0) g

 _ -> return g

isValidFile :: FilePath -> Bool

isValidFile f = "3color" /= last (wordsWhen (=='.') (show f)) && f /= "." && f /= ".."

loop :: Handle -> (Handle -> Graph -> IO Graph) -> Graph -> IO Graph

loop h f g = do

 outgraph <- f h g

 eof <- hIsEOF h

 if eof then do return outgraph

 else do (loop h f outgraph) >>= (\y -> return y)

wordsWhen :: (Char -> Bool) -> String -> [String]

wordsWhen p s = case dropWhile p s of

 "" -> []

 s' -> w : wordsWhen p s''

 where (w, s'') = break p s'

-- color of a vertex

-- e.g. color "A" g

getColor :: Node -> Graph -> Color

getColor n g = case Map.lookup n g of

 Just v -> (snd v)

 Nothing -> 0

-- given a list of nodes and a graph, retrieve all colour assignments to the node

getColors :: [Node] -> Graph -> [Color]

getColors [] _ = []

getColors (x:xs) g = getColor x g : getColors xs g

-- gets all neighbors for a node in a graph

getNeighbors :: Node -> Graph -> AdjList

getNeighbors n g = case Map.lookup n g of

 Just v -> (fst v)

 Nothing -> []

getAllColors :: Maybe Graph -> [Color]

getAllColors g = case g of

 Just gr -> map (\(k, v) -> snd v) $Map.toList gr

 Nothing -> []

-- assings a colour to a single node in the graph

setColor :: Graph -> Node -> Color -> Graph

setColor g n c = case Map.lookup n g of

 Just v -> Map.insert n ((fst v), c) g

 Nothing -> g

readAdjList :: String -> AdjList

readAdjList x = wordsWhen (==',') x

-- checks if this color can be assigned to a vertex

-- e.g. validColor "A" 1 g

validColor :: Node -> Graph -> Color -> Bool

validColor n g c = c `notElem` getColors (getNeighbors n g) g

printSolution :: Graph -> String

printSolution g = unlines $ map (\n -> n ++ ':' : showColor n) nodes

 where nodes = Map.keys g

 showColor n = show $ getColor n g

-- checks if all vertices have been coloured

-- e.g. allVerticesColored g

allVerticesColored :: Graph -> Bool

allVerticesColored g = 0 `notElem` getColors (Map.keys g) g

checkValidColoredPar :: Maybe Graph -> Maybe Graph

checkValidColoredPar g = case g of

 Nothing -> Nothing

 Just a -> checkValidColoredPar' (Map.keys a) a

checkValidColoredPar' :: [Node] -> Graph -> Maybe Graph

checkValidColoredPar' [] _ = Nothing

checkValidColoredPar' [n] g | getColor n g `notElem` getColors (getNeighbors n g) g = Just g

 | otherwise = Nothing

checkValidColoredPar' nodes g

 | runEval $ do

 front <- rpar $ checkValidColoredPar' first g

 back <- rpar $ checkValidColoredPar' second g

 return (Maybe.isJust front && Maybe.isJust back) = Just g

 | otherwise = Nothing

 where (first, second) = splitAt (length nodes `div` 2) nodes

checkValidColored :: Maybe Graph -> Maybe Graph

checkValidColored g = case g of

 Nothing -> Nothing

 Just a -> checkValidColored' (Map.keys a) a

checkValidColored' :: [Node] -> Graph -> Maybe Graph

checkValidColored' [] g = Just g

checkValidColored' (n:ns) g

 | getColor n g `notElem` getColors (getNeighbors n g) g = checkValidColored' ns g

 | otherwise = Nothing

findClashingNodes :: Node -> Graph -> [Node]

findClashingNodes n g = [x | x <- (getNeighbors n g), (getColor n g) == (getColor x g)]

colorNode :: Node -> [Color] -> Graph -> Color

colorNode _ [] _ = 0

colorNode n (x:xs) g = if validColor n g x then do x

 else do colorNode n xs g

setColors :: Graph -> [Node] -> Color -> Graph

setColors g [] _ = g

setColors g [n] c = setColor g n c

setColors g (n:ns) c = setColors (setColor g n c) ns c

GraphColoringAlgos.hs - This file contains all the various graph colouring algorithms we came up with,
including how we parallelized
module GraphColoringAlgo

(backtracking,

 colorIndependent,

 divideConquerPar,

 greedy

) where

import Utils

import Data.List (sort)

import qualified Data.Map as Map

import Control.Parallel.Strategies (rpar, rseq, runEval, parListChunk, using, parMap,

parBuffer)

backtracking :: [Node] -> [Color] -> [Color] -> Graph -> Maybe Graph

backtracking _ [] _ g = Just g

backtracking [] _ _ g = Just g

backtracking _ _ [] _ = Nothing

backtracking nodes@(n:ns) colors (c:cs) g

 | validColor n g c = case (backtracking ns colors colors $ setColor g n c) of

 Just gout -> Just gout

 Nothing -> backtracking nodes colors cs g

 | otherwise = backtracking nodes colors cs g

greedy :: [Node] -> [Color] -> [Color] -> Graph -> Maybe Graph

greedy _ [] _ g = Just g

greedy [] _ _ g = Just g

greedy _ _ [] _ = Nothing

greedy nodes@(n:ns) colors (c:cs) g

 | validColor n g c = greedy ns colors colors $ setColor g n c

 | otherwise = greedy nodes colors cs g

inducedGraph :: Graph -> [Node] -> Graph

inducedGraph g nodes = Map.fromList (map (\x -> (x, (adj x, 0))) nodes `using` parListChunk

(length nodes `div` 2) rseq)

 where adj = (\nx -> filter (\y -> y `elem` nodes) $ getNeighbors

nx g)

independentSet :: Graph -> Graph -> [Node] -> [Node] -> [Node]

independentSet _ _ [] i = i

independentSet g ig u@(x:_) i | length (Map.keys ig) == 0 = i

 | otherwise = independentSet g ig_new u_new i_new

 where i_new = x : i

 u_new = filter (\y -> y `notElem` (x:

getNeighbors x g)) u

 ig_new = inducedGraph g u_new

colorNodes :: Graph -> [Node] -> Color -> Graph

colorNodes g [] _ = g

colorNodes g nodes c = Map.union (fst pr) (Map.mapWithKey (_ x -> (fst x, c)) (snd pr))

 where pr = Map.partitionWithKey (\k _ -> k `notElem` nodes) g

colorIndependent :: Graph -> Graph -> [Node] -> [Color] -> Maybe Graph

colorIndependent g _ _ [] = Just g

colorIndependent g _ [] _ = Just g

colorIndependent g ig u (c:cs) | length (Map.keys ig) == 0 = Just g

 | otherwise = runEval $ do

 i_new <- rseq $ independentSet ig ig u_nodes []

 u_new <- rpar $ filter (\y -> y `notElem` i_new)

u

 colored_g <- rpar $ colorNodes g i_new c

 ig_new <- rpar $ inducedGraph g u_new

 return $ colorIndependent colored_g ig_new u_new

cs

 where u_nodes = Map.keys ig

divideConquerPar :: [Node] -> Graph -> Maybe Graph

divideConquerPar n g = divideConquerPar' n [1..(length (Map.keys g))] g

divideConquerPar' :: [Node] -> [Color] -> Graph -> Maybe Graph

divideConquerPar' _ [] g = Just g

divideConquerPar' [] _ g = Just g

divideConquerPar' [n] colors g

 | allVerticesColored g = Just g

 | otherwise =

 if nodeColor > 0 then do

 Just $ setColor g n nodeColor

 else do

 Nothing

 where nodeColor = colorNode n colors g

divideConquerPar' nodes colors g

 | allVerticesColored g = Just g

 | otherwise = runEval $ do

 front <- rpar $ divideConquerPar' first colors $ subGraph first g Map.empty

 back <- rpar $ divideConquerPar' second colors $ subGraph second g Map.empty

 case (front, back) of

 (Just g, Nothing) -> return $ Just $ g

 (Nothing, Just g) -> return $ Just $ g

 (Just g, Just y) -> return $ Just $ merge (Map.keys (Map.union g y)) colors $

Map.union g y

 _ -> return $ Nothing

 where (first, second) = splitAt (length nodes `div` 2) nodes

merge :: [Node] -> [Color] -> Graph -> Graph

merge [] _ g = g

merge [x] colors g = setColors g (findClashingNodes x g) $ head updateColors

 where updateColors = filter (validColor x g) colors

merge (x:xs) colors g = merge xs updateColors $ setColors g (findClashingNodes x g) $ head

updateColors

 where updateColors = filter (validColor x g) colors

subGraph :: [Node] -> Graph -> Graph -> Graph

subGraph [] _ x = x

subGraph [n] g x = Map.union x (Map.insert n ((getNeighbors n g), (getColor n g)) x)

subGraph (n:ns) g x = subGraph ns g (Map.union x (Map.insert n ((getNeighbors n g), (getColor

n g)) x))

graph_colouring.hs - This is the main driver file for our solution
-- stack ghc -- --make -Wall -O2 -threaded -rtsopts -eventlog graph_colouring.hs

import Utils

import GraphColoringAlgo

import System.Exit(die)

import System.Environment(getArgs, getProgName)

import qualified Data.Map as Map

import Control.Monad.IO.Class (liftIO)

import Control.Monad.Par.Combinator (parMapM)

import Control.Monad.Par.IO (runParIO)

import System.Directory

import System.Random.Shuffle

main :: IO ()

main = do

 args <- getArgs

 pn <- getProgName

 let errorMsg = "Usage: " ++ pn ++ " <input-{filename/foldername}> <number-of-colors> <algo:

{divide-conquer/backtracking/IndepSet/greedy}> <method: file/folder> <output-folder>"

 case args of

 [graph_file, number_colours, algo, method, outFolder] -> do

 func <- case algo of

 "backtracking" -> do

 let colours = read number_colours

 return (\g -> backtracking (Map.keys g) [1..colours] [1..colours] g)

 "indep-set" -> return (\g -> colorIndependent g g (Map.keys g) [1..])

 "greedy" -> return (\g -> backtracking (Map.keys g) [1..] [1..] g)

 "divide-conquer" -> do

 return (\g -> divideConquerPar (Map.keys g) g)

 case method of

 "file" -> do

 msg <- colorAGraph graph_file func outFolder ""

 putStrLn msg

 "folder" -> do

 let inFolder = graph_file

 filepaths <- filter isValidFile <$> getDirectoryContents inFolder

 filepathShuffled <- shuffleM filepaths

 putStrLn $ "coloring: \n" ++ (unlines filepathShuffled)

 responses <- runParIO $ parMapM (\f -> liftIO $ colorAGraph f func outFolder

inFolder) filepathShuffled

 mapM_ putStrLn responses

 _ -> do

 die errorMsg

 _ -> do

 die errorMsg

