
HipgRap - Report

Bicheng Gao (bg2640) \ Kangwei Ling (kl3076)

Introduction

Grep is a very useful command line tool for search patterns in text-based files.

We would like to implement such a tool in haskell, called HipgRap, for purposes of both

practising programming with haskell and gaining experience on building system tools

focusing on performance. A typical grep tool has three parts: find the files to search,

search patterns in those files, and print the result. Our implementation will focus on the

search of string literals.

Motivation

Current haskell implementation of grep in the library is not efficient enough,

especially when you compare it to other implementation in C(GNU grep) and

Rust(ripgrep). The basic motivation is to use the parallelism feature of Haskell to boost

the execution of reading files, finding matches in each line.

Implementation

We have implemented six versions in total, each focuses on different level of

parallelism, check out the following table for their differences.

File Description

SeqGrap.hs Sequential version of the grep, read the

entire file and run the BM algorithm line

by line.

StaPar.hs Static partitioning version, read the entire

file as SeqGrap.hs, however, it splits the

input into several chunks (we choose 4)

and run BM algorithm on each chunk in

parallel.

DynPar.hs Dynamic partitioning version, similar to

StaPar.hs, it sparks a thread on every line

instead of a chunk of input.

ParIO.hs Parallel IO version, this one is similar to

the StaPar.hs too. The new thing is that

we add parallel support for the input, we

split the input file in many chunks,

multiple threads will start at different

offset for the input file.

Grap.hs Multiple-file parallel version, it tries to

solve the problem in another level of

parallelism. Many files can be searched at

same time.

SeqHipGrap.hs Another version of SeqGrap that searches

in the whole directory recursively if a

directory is passed as the argument

There are two levels of parallelism in our implementations: file-level parallelism and

line-based/chunk-based parallelism.

The file-level parallelism is used in Grap.hs, since it must efficiently search in multiple

files, which makes us want to introduce concurrency here, so we can search different

files concurrently. We have used explicit parallelism with Channels, forkIO. Specifically,

we create a dedicated thread to traverse the directories and add files that need to be

searched to the channel, and we create several worker threads that read from the

channel to grab files to work on. We spent some time on learning how to implement

such a worker threadpool solution as it is quite different than other imperative language

since we must deal with the monad environment.

Line-based/chunk-based parallelism is used for single file searching, as implemented in

StaPar.hs, DynPar.hs and ParIO.hs. We split the search on each line/chunk by using the

Parallel library, specifically, rpar, parMap, rseq.

At first, we only implemented the version without the parallelism on the IO, it turns out

they are pretty slow, and even can not compete with the sequential version. Since we

chose Boyer Moore algorithm for string matching, the running time is linear to the input

size, which makes the IO become the bottleneck. After some investigations, we found

Haskell supports the POSIX way of reading. It’s possible to read like `pread`, we can

specify an offset to a file descriptor, and reading a specific number of bytes from that

position. By this way, we can make multiple threads starting from different offset and

reading their own parts. It makes a pretty good performance improvement, and beaten

all other versions. The following table is the performance test result.

Single File Test Results

Implementation Total time Test parameters All running on a

file with size

around 25MB.
SeqGrap.hs 0.224 s +RTS -N1 -ls -s

StaPar.hs 0.263 s +RTS -N4 -ls -s

DynPar.hs 0.514 s

ParIO.hs 0.139 s

Grap.hs 0.627 s

Single File Test Thread Scope Results

- SeqGrap.hs

- StaPar.hs

- DynPar.hs

- ParIO.hs

- Grap.hs

As we can see from the results, the ParIO version which parallels the chunk reading of
the file runs fastest. The IO part is indeed the bottleneck of grep since the string matching
algorithm runs pretty fast enough compared with IO.

Multi-files Searching Test Results

Implementation Total time Parameter Searching for “fair” in

linux kernel source

Grap.hs 12.737 s +RTS -N4 -ls -s

SeqHipGrap.hs 15.955 s +RTS -N1 -ls -s

Multi-Files Test Thread Scope Results

- Grap.hs

- SeqHipGrap.hs

For recursively searching in multiple files and directories, our parallel or

concurrent version Grap.hs slightly beat the sequential version. We actually expect its

performance to be much better than the sequential version. We speculate it is because

our implementation brings too much overhead as to the sequential version.

Remarks

One thing remaining is to solve the corner cases that one line might be split into

multiple chunks for our Parallel IO version, the simple way is to concatenate the last line

of i-th chunk and first line of i+1-th chunk, and check it separately. Since we only split

the input into 4 chunks, here we ignore its influence to the performance.

Code Listing

SeqGrap.hs

import System.Environment

import Data.Maybe

import qualified Data.ByteString as B

import qualified Data.ByteString.Char8 as BC8

import qualified Data.ByteString.Search as BS

solve :: BC8 . ByteString -> BC8 . ByteString -> Maybe BC8 . ByteString

solve pat text

 | check == True = Just text

 | otherwise = Nothing

 where check = not . null $ BS . indices pat text

printMaybe :: Maybe BC8 . ByteString -> IO ()

printMaybe (Just x) = BC8 . putStrLn x

printMaybe Nothing = return ()

main :: IO ()

main = do

 [pat, filename] <- getArgs

 contents <- B . readFile filename

 let res = map (solve (BC8 . pack pat)) $ BC8 . lines contents

 mapM_ printMaybe (filter isJust res)

StaPar.hs

import System.Environment

import Data.Maybe

import qualified Data.ByteString as B

import qualified Data.ByteString.Char8 as BC8

import qualified Data.ByteString.Search as BS

import Control.Parallel.Strategies

import Control.DeepSeq

solve :: BC8 . ByteString -> BC8 . ByteString -> Maybe BC8 . ByteString

solve pat text

 | check = Just text

 | otherwise = Nothing

 where check = not . null $ BS . indices pat text

printMaybe :: Maybe BC8 . ByteString -> IO ()

printMaybe (Just x) = BC8 . putStrLn x

printMaybe Nothing = return ()

main :: IO ()

main = do

 [pat, filename] <- getArgs

 contents <- B . readFile filename

 let as = BC8 . lines contents

 len = length as `div` 4

 (a, bs) = splitAt len as

 (b, cs) = splitAt len bs

 (c, d) = splitAt len cs

 sol = runEval $ do

 a' <- rpar (force (map (solve (BC8 . pack pat)) a))

 b' <- rpar (force (map (solve (BC8 . pack pat)) b))

 c' <- rpar (force (map (solve (BC8 . pack pat)) c))

 d' <- rpar (force (map (solve (BC8 . pack pat)) d))

 _ <- rseq a'

 _ <- rseq b'

 _ <- rseq c'

 _ <- rseq d'

 return (a' ++ b' ++ c' ++ d')

 -- return (length a' + length b' + length c' + length d')

 mapM_ printMaybe (filter isJust sol)

 -- print sol

DynPar.hs

import System.Environment

import Data.Maybe

import qualified Data.ByteString as B

import qualified Data.ByteString.Char8 as BC8

import qualified Data.ByteString.Search as BS

import Control.Parallel.Strategies hiding (parMap)

solve :: BC8 . ByteString -> BC8 . ByteString -> Maybe BC8 . ByteString

solve pat text

 | check = Just text

 | otherwise = Nothing

 where check = not . null $ BS . indices pat text

printMaybe :: Maybe BC8 . ByteString -> IO ()

printMaybe (Just x) = BC8 . putStrLn x

printMaybe Nothing = return ()

parMap :: (a -> b) -> [a] -> Eval [b]

parMap _ [] = return []

parMap f (a : as) = do b <- rpar (f a)

 bs <- parMap f as

 return (b : bs)

main :: IO ()

main = do

 [pat, filename] <- getArgs

 contents <- B . readFile filename

 let res = runEval (parMap (solve (BC8 . pack pat)) $ BC8 . lines contents)

 mapM_ printMaybe (filter isJust res)

 -- print $ length res

ParIO.hs

{-# LANGUAGE LambdaCase #-}

{-# LANGUAGE PackageImports #-}

{-# LANGUAGE ScopedTypeVariables #-}

import System.Environment

import Data.Maybe

import qualified Data.ByteString as B

import qualified Data.ByteString.Char8 as BC8

import qualified Data.ByteString.Search as BS

import Control.Parallel.Strategies

import Control.DeepSeq

import qualified System.Posix.IO as PIO

import qualified "unix-bytestring" System.Posix.IO.ByteString as PIOB

import System.Posix.Types

import qualified System.Posix as P

solve :: BC8 . ByteString -> BC8 . ByteString -> Maybe BC8 . ByteString

solve pat text

 | check = Just text

 | otherwise = Nothing

 where check = not . null $ BS . indices pat text

printMaybe :: Maybe BC8 . ByteString -> IO ()

printMaybe (Just x) = BC8 . putStrLn x

printMaybe Nothing = return ()

getFileSize :: String -> IO FileOffset

getFileSize path = do

 stat <- P . getFileStatus path

 return (P . fileSize stat)

main :: IO ()

main = do

 [pat, filename] <- getArgs

 filesize <- getFileSize filename

 fd <- PIO . openFd filename PIO . ReadOnly (Just (CMode 0440)) PIO. defaultFileFlags

 let chunk_size_bt :: ByteCount = fromIntegral (filesize ` div` 4)

 let rm_bt :: ByteCount = fromIntegral filesize - 3 * chunk_size_bt

 let chunk_size_off :: FileOffset = filesize ` div ` 4

 ca <- PIOB . fdPread fd chunk_size_bt 0

 cb <- PIOB . fdPread fd chunk_size_bt chunk_size_off

 cc <- PIOB . fdPread fd chunk_size_bt (chunk_size_off * 2)

 cd <- PIOB . fdPread fd rm_bt (chunk_size_off * 3)

 let sol = runEval $ do

 a' <- rpar (force (map (solve (BC8 . pack pat)) $ BC8 . lines ca))

 b' <- rpar (force (map (solve (BC8 . pack pat)) $ BC8 . lines cb))

 c' <- rpar (force (map (solve (BC8 . pack pat)) $ BC8 . lines cc))

 d' <- rpar (force (map (solve (BC8 . pack pat)) $ BC8 . lines cd))

 _ <- rseq a'

 _ <- rseq b'

 _ <- rseq c'

 _ <- rseq d'

 return (a' ++ b' ++ c' ++ d')

 -- return (length a' + length b' + length c' + length d')

 mapM_ printMaybe (filter isJust sol)

 -- print sol

Grap.hs

import Control.Monad (forM_ , forever)

import Control.Concurrent.STM

import Control.Concurrent (forkIO , forkFinally , threadDelay)

import Control.Parallel

import Control.Parallel.Strategies (parMap , rpar)

import System.Directory (doesDirectoryExist , getDirectoryContents)

import System.FilePath ((</>))

import qualified Data.ByteString.Char8 as B

import qualified Data.ByteString.Search as BS

import System.Environment (getArgs , getProgName)

numOfWorkers = 4

grabFiles :: FilePath -> Bool -> TChan (Maybe FilePath) -> IO ()

grabFiles fpath recursive chan = do

 walkDir fpath recursive

 -- add terminators

 forM_ [0 .. numOfWorkers - 1] $ \ _ -> atomically $ writeTChan chan Nothing

 where

 fileFilter fname = head fname /= '.'

 walkDir :: FilePath -> Bool -> IO ()

 walkDir path recursive = do

 isDir <- doesDirectoryExist path

 if isDir

 then do

 names <- getDirectoryContents path

 let properNames = filter fileFilter names

 forM_ properNames $ \ fname -> walkDir (path </> fname) recursive

 else atomically $ writeTChan chan (Just path)

runGrap :: String -> FilePath -> IO ()

runGrap pat filepath = do

 jobChan <- newTChanIO

 outChan <- newTChanIO

 let bpat = B . pack pat

 forkIO $ grabFiles filepath True jobChan

 -- start workers

 forM_ [0 .. numOfWorkers - 1] $ \ i -> forkIO $ runWorker i jobChan outChan bpat

 -- gather result and print

 printResults outChan

runWorker :: Int -> TChan (Maybe FilePath) -> TChan Output -> B . ByteString -> IO ()

runWorker wid jobChan outChan pat = runLoop

 where

 runLoop = do

 filename <- atomically $ readTChan jobChan

 case filename of

 Just fname -> do

 searchInFile pat fname outChan

 runLoop

 Nothing -> atomically $ writeTChan outChan Terminated

searchInFile :: B . ByteString -> FilePath -> TChan Output -> IO()

searchInFile pat fname outChan = do

 content <- B . readFile fname

 let augLines = zip [1 ..] $ B . lines content

 matches = filter (\ al @ (_, line) -> not . null $ BS. indices pat line) augLines

 atomically $ writeTChan outChan (Matches fname matches)

printResults :: TChan Output -> IO ()

printResults outChan = loop 0

 where

 loop i =

 if i == numOfWorkers

 then return ()

 else do

 output <- atomically $ readTChan outChan

 case output of

 Terminated -> loop (i + 1)

 Matches fpath results -> do

 forM_ results $ \ (ln, txt) -> putStrLn $ fpath ++ ":" ++ show

ln ++ ": " ++ B . unpack txt

 loop i

data Output = Terminated | Matches FilePath [(Int , B . ByteString)]

main :: IO ()

main = do

 [pat, filename] <- getArgs

 runGrap pat filename

SeqHipGrap.hs

import System.Environment

import Data.Maybe

import qualified Data.ByteString as B

import qualified Data.ByteString.Char8 as BC8

import qualified Data.ByteString.Search as BS

import System.Directory (doesDirectoryExist , getDirectoryContents)

import System.FilePath ((</>))

import Control.Monad (forM_ , forever)

solve :: BC8 . ByteString -> BC8 . ByteString -> Maybe BC8 . ByteString

solve pat text

 | check == True = Just text

 | otherwise = Nothing

 where check = not . null $ BS . indices pat text

printMaybe :: Maybe BC8 . ByteString -> IO ()

printMaybe (Just x) = BC8 . putStrLn x

printMaybe Nothing = return ()

main :: IO ()

main = do

 [pat, filename] <- getArgs

 let bpat = BC8 . pack pat

 grapFiles filename True bpat

grapFiles :: FilePath -> Bool -> BC8. ByteString -> IO ()

grapFiles fpath recursive pat = walkDir fpath recursive

 where

 fileFilter fname = head fname /= '.'

 walkDir :: FilePath -> Bool -> IO ()

 walkDir path recursive = do

 isDir <- doesDirectoryExist path

 if isDir

 then do

 names <- getDirectoryContents path

 let properNames = filter fileFilter names

 forM_ properNames $ \ fname -> walkDir (path </> fname) recursive

 else grap path pat

grap :: FilePath -> BC8 . ByteString -> IO ()

grap fpath pat = do

 contents <- B . readFile fpath

 let res = map (solve pat) $ BC8 . lines contents

 linedRes = zip [1 ..] res

 finalRes = filter (isJust . snd) linedRes

 forM_ finalRes $ \ (ln, txt) -> putStrLn $ fpath ++ ":" ++ show ln ++ ": " ++

BC8 . unpack (fromJust txt)

