
Name: Eric Chase
UNI: eac2242

COMS W4995 Project

Overview

For my project, I wrote a Haskell implementation of the D* Lite
algorithm. Developed by Sven Koenig in 2002, D* Lite is a search
algorithm in the vein of A* search whose aim is to determine a
path between an agent’s location and a designated goal state.
Unlike A* search, however, D* Lite can importantly be used for
navigation in unknown terrain, meaning that the traversability
of states are not known ahead of time. For this reason, D* Lite
is utilized predominately in applications of robot navigation,
whereby the locations of obstacles are determined on-the-fly
using the robot’s sensors.

As a high-level description, the D* Lite algorithm initially
assumes that the state space does not contain obstacles. With
this assumption in mind, it calculates an ideal shortest path to
the goal state. The agent then follows that path until a new
obstacle is encountered. At this point, state-specific heuristic
information is updated and new arc costs are calculated between
locally affected states. The shortest path is replanned, and the
search continues until the goal state is reached.

Implementation

This section details the implementation specifics of my program.

First, the D* Lite algorithm uses a priority queue to hold
states whose heuristics may need to be updated. I found that
none of the readily available priority queue implementations for
Haskell fit my needs for D* Lite’s priority queue, so I wrote my
own priority queue data type called MyPrioQueue in
myPrioQueue.hs (using a hash map and set), along with a number
of functions to modify an instance of my queue type.
Importantly, writing a custom priority queue implementation
allowed me to define and optimize certain operations that the
algorithm performs frequently:

• The remove function removes an arbitrary state from the
queue in O(logn) time, where n is the number of items in
the queue. There is no analogous function defined in the
Data,Heap or Data.PQueue packages.

• The insert function adds a state-priority pair to the queue
in O(logn) time (same as Haskell’s existing
implementations).

• The findMin function returns the state-priority pair in the
queue with the minimum priority. It runs in O(nlogn) time.
The analogous function in Data.Heap runs in constant time,
but only returns the minimum value without its associated
priority.

• The member function returns a boolean indicating whether a
state is present in the queue in constant time. There is no
analogous function defined in the Data,Heap or Data.PQueue
packages.

• The empty function returns a boolean indicating whether the
queue in empty in constant time (same as Haskell’s existing
implementations).

My implementation of the actual D* Lite algorithm is defined
within dstar.hs. As outlined in my proposal, the file contains a
top-level function that expects input from the user
corresponding to the size of the map, the start and goal states
of the search problem, and the obstacle locations (specifics on
how to run the program are presented in the README). It prints
all of the successive paths proposed by the algorithm during the
course of its execution. The final path printed to the console
is a path from the start to goal states that navigates around
all of the map’s obstacles.

Additionally, using record notation, I defined a data type
called SearchState that contains all of the parameters of the
search problem. The state monad is crucial to my implementation,
allowing the search parameters to be passed between the D* Lite
functions in the form of a SearchState. Each of the search
parameters are described below:

• s_queue is the priority queue of the algorithm.
• s_stats holds state-specific statistics. It is a map

between states (coordinate pairs) and pairs of doubles (g
and rhs values) that are used to determine priority.

• s_obs is a set containing the locations of all obstacles in
the map.

• seen_obs is a set containing the locations of all
previously-encountered obstacles.

• s_km is a value that is added to priorities in order to
prevent having to reorganize the priority queue at any
point.

• s_start is the current position of the robot.
• s_start0 is the starting position of the robot.

• s_goal is the goal location of the robot.
• s_last is the previous position of the robot.
• s_height is the height of the map.
• s_width is the width of the map.

Finally, I tried to stick relatively closely to Koenig’s
original outline in my implementation of the D* Lite algorithm.
The key functions of the algorithm are described below:

• driver is the main driving function of the algorithm. Each
iteration, it moves the robot to a new state and scans for
obstacles. If any obstacles are found, the queue is updated
by calling updateQueue. Once updated, the algorithm may
propose a new path (if the previously unknown obstacle
blocked the progress of the previous path). The new path is
determined by calling the computeShortestPath function.
This process continues until the goal state is reached,
when all of the proposed paths are returned.

• updateQueue is the function that updates the algorithm’s
priority queue when an obstacle in encountered. It loops
until there are no longer any states in the queue that need
their information to be updated.

• updateVertex receives a state as input and updates the
specific attributes of that state. This function is called
for each state that updateQueue iterates over. It can
modify the state’s statistics (g and rhs values) or update
its placement in the priority queue.

• computeShortestPath receives a copy of the search
parameters and builds the algorithm’s current proposed path
by following the cheapest transitions from the start to
goal state. It returns this proposed path.

It is important to note that the program expects proper input
from the user. Namely, the start, goal, and obstacles must
reside within the extents of the map (for example, (11, 11) is
not a valid location if the map size is 10 x 10), and there must
be a valid path to the goal (meaning that no obstacles reside on
the start or goal states, and there exists a path such that the
robot can reach the goal from the start state). Cases of
malformed input will result in undefined behavior.

Parallelization

NOTICE: Although I was unable to achieve a speedup of my
program through parallelization, the following section will
serve as documentation of what I attempted.

Originally, I proposed two main areas of interest in my D* Lite
implementation that I believed could benefit from parallelism:

1. Parallelizing actions that must be performed on all
child/successor states.

 When a state is removed from the priority queue in D* Lite,
 its four successor states must be updated and potentially
 removed as well. In my project proposal, I speculated that
 each of these operations could safely be performed in
 parallel, with a separate thread handling each successor. In
 my code, the action of updating a state’s children is
 performed using map operations. Thus, my attempt to
 parallelize this process involved parallelizing these map
 operations. Two different types of map operations were
 present in my code:

A. Calls to mapM_

Outside of printing all proposed paths at the end of the
program’s execution, all calls to mapM_ are used to
iteratively apply the updateVertex function to a state’s
children. These calls appear in the scanUpdate function,
which is called when new obstacles are discovered, and the
updateQueueHelper function, which is called by updateQueue.

Once the algorithm was implemented, I realized that these
map operations are not actually valid candidates for
parallelization like I originally thought because of the
way that search parameters are shared across function calls
via state. The successors need to be updated is sequential
order. Otherwise, if the operations are performed in
parallel, updates to the state contents (the search
parameters) by one thread can be overwritten by another
thread depending on when the threads access and save state.
If having multiple threads was absolutely necessary, the
state could be shared across the threads using something
like an MVar, which essentially forces sequential behavior
between threads anyway using a locking mechanism. Thus,
attempting to parallelize these calls was pointless.

B. Calls to map

These calls appear in three locations (the driver,
computeShortestPath, and updateVertex functions), and are
used to calculate a list of costs for moving to each of a
state’s successors. This is done so that the least

expensive successor state can be selected, which the
algorithm moves the robot to.

Originally, I figured that the pure map operations could be
parallelized using the parList strategy such that a thread
could calculate each of the successor costs simultaneously.
The issue with the mapM_ calls is not present this time
around because computing the cost of a state does not
require modifying the search parameters. When all of the
map calls were evaluated using the parList strategy, this
was the outcome of an example run on four cores (I tried
combining parList with a number of different strategies,
but the results were the same each time):

The ThreadScope event log showed decent work balancing
across the four cores with occasional garbage collection,
and some sparks were even converted into useful work.
However, despite this, the vast majority of sparks (around
98%) were garbage collected, and sequential execution of
the program was still faster (for reference, the same
search problem on a single core ran in 3.569 seconds). In
an attempt to address this issue, I reasoned that far too
many sparks were being created, and that having fewer
sparks would minimize garbage collection time. My idea was
to have only the top-level driver function create sparks
(such that only four sparks are created on each iteration

of the algorithm). While this worked in reducing the number
of sparks created, the results were similar to before, with
the majority of sparks being garbage collected:

I believe that the cause of this problem is two-fold. On
one hand, the threads likely do not have enough time to
perform their computations because the main thread requires
the results immediately in order to retrieve the minimum
cost state. Thus, the main thread may perform the
computations before the sparks can be even be assigned to a
thread, which is why many end up getting garbage collected.
Secondly, the problem may also be an issue with granularity
of the work being assigned to threads. Because the
operation of calculating a state’s cost can be done very
quickly, sparking a thread to do it in parallel is overkill
in a sense, and takes away from the ability of the main
thread to stay busy. If we look at the activity section of
the Threadscope output for one core (sequential execution),
we can see that the activity level is much higher than when
using four cores:

This told me that parallelizing any of the map operations
in my program was excessive and would likely not result in
the speedup that I desired.

2. Parallelizing the action of computing the current proposed
path:

 The priority queue is updated in D* Lite each time a
 previously unknown obstacle is encountered, implicitly
 creating the next path proposed by the algorithm. However,
 under normal execution of the algorithm, paths are never
 fully revealed, as the solution can simply be retrieved by

 following the cheapest transitions from the start to goal
 state using the search parameters. Unlike the mapping
 operations discussed previously, the process of uncovering
 this path is a perfect candidate for parallelization because
 it is a “fire-and-forget” activity that has no impact on the
 execution of the main driving function. Thus, the
 computeShortestPath function can be sparked in parallel once
 the queue is done updating after having encountering an
 object.

 To implement this idea, I tried using a number of different
 parallel strategies, including rpar, rseq, rdeepseq, and
 rparWith in combination with rseq and rdeepseq. In each case,
 I was unable to produce the desired parallel behavior. The
 computeShortestPath function is fired off in parallel for
 each iteration of the algorithm in which a new obstacle in
 encountered. Thus, sparks should be created throughout the
 lifetime of the program. During trial runs, it is clear that
 my program creates the correct number of sparks (one for each
 obstacle). However, ThreadScope shows that these sparks are
 not created until the very end of the program’s execution,
 where they immediately fizzle out (presumably because the
 main thread needs to print the paths at that point and so it
 does the work itself):

 Normally, my program checks that the path returned from
 computeShortestPath has not already been proposed by the
 algorithm so that the list of paths printed to the user does
 not contain repeats (the new path will be the same as the
 previous path whenever the discovered obstacle does not block
 the previous path). This means that the main thread requires
 the path to be completely evaluated immediately, and I
 speculated that this could have been the reason for why the
 sparks were fizzling out. However, removing the check for
 duplicate paths did not alleviate the issue. While more

 sparks are converted into useful work than before, they are
 still not created until the end of the program’s execution.

 I am unsure why my program ignores the calls for parallelism
 when sparks are created. It seems to be an issue with
 Haskell’s laziness preventing eager evaluation of the paths.
 Because no parallel work is ever actually performed, the
 runtime of my program is once again slower using multiple
 cores than when ran sequentially, likely due to the overhead
 of establishing multiple threads of execution and the
 additional time that is wasted when all of the sparks are
 pointlessly created at the end of the program’s execution.

Finally, the following graph is provided to give an idea of how
much slower my program runs on multiple cores (when compiled
with optimizations). Note that the test case listed in the
README was used for each execution:

