
Little Self-Replicating Programs

Alex Gajewski (apg2162)

December 18, 2019

1

1 Introduction

In this project, I built a simple open-ended ALife simulator. Open-ended is a keyword here. Most
ALife simulators use an explicit evolutionary process, with organisms that have some genetic code
and some reproduction mechanism. They also usually have some sense of evolutionary fitness that
the organisms are trying to optimize.

In this project, I’ve done away all these things and simulated at a slightly lower level, where you
just have little bits of code that can modify each other and themselves, and a bit of randomness
thrown in. The idea is that something like reproduction would probably emerge, because if any
such idea happened to emerge by chance, it would quickly expand and take over everything. The
only question is how long it would take until such a thing emerged.

More concretely, the idea is this: there is a list of code expressions (imagine Lisp S-expressions
for something specific) that represents the universe, and there is some fixed number of threads of
execution, representing energy in this universe (this is where parallelization could give a speedup).
Each thread of execution is always evaluating some expression in the list, and if it ever finishes, it
jumps to another random one and starts up again.

There is also some base rate of mutation, by which randomly selected code expressions are
mutated according to some mutation rule. Importantly, some of the instructions allow the code
expressions to read and write their own and each others’ code. This is done through relative
addressing so that the same expression can be used for recursion anywhere in the list. For example,
an expression should ask for (peek 0) to get itself, (peek 1) for its neighbor to the right, (peek
-1) for its neighbor to the left, etc. This mechanism, together with the ability to pass execution
to one of these other expressions (e.g. ((expr -1))) ought to be enough to make the whole thing
Turing-complete.

At the beginning of the simulation, the universe list is filled with randomly generated code
expressions, and the threads of execution are be assigned to randomly selected expressions. At this
point, the game will be to see how long it takes for recursion to occur (all you need is one of the
expressions to be ((expr 0)) to capture the execution thread indefinitely, until a mutation kills the
program), and to try to study any other patterns that emerge.

1

2 Code

This section contains a walkthrough of all of the code in the simulator. If something doesn’t make
sense, feel free to email me at apg2162@columbia.edu.

2.1 Value.lhs

This module contains declarations of the basic types that we’ll be using throughout the rest of the
code. It also contains a few little helper functions that didn’t have better homes. The following
language extensions just make things a bit easier, letting us automatically derive a few typeclass
instances and implement the MonadState typeclass.

{-# LANGUAGE GeneralizedNewtypeDeriving #-}

{-# LANGUAGE MultiParamTypeClasses #-}

{-# LANGUAGE NamedFieldPuns #-}

module Value (

Value(..),

EvalError(..),

Thread(..),

WorldState(..),

throw,

pause,

runThread,

liftRandom,

) where

We’ll be using transformers to build up the Thread monad, so we need the following imports:

import Control.Monad.Identity

import Control.Monad.Except

import Control.Monad.State

import Control.Monad.Coroutine

We also need the Rand monad to deal with mutations and random initialization. There is a RandT

transformer, but since it’s just a wrapper for StateT and since we’re already using one of those
to keep track of the WorldState, I thought it would be more straightforward to add a random
generator to the WorldState and make a liftRandom helper function (see below).

import Control.Monad.Random

import System.Random

For parallelization, we’re going make NFData instances for all of the relevant data structures, so
that we can force deep enough parallel evaluation at each step of execution.

import Control.DeepSeq

import Control.Parallel.Strategies

Basically everything is currently implemented with maps, even the universe of cells, which would
more reasonably have been implemented as an array. This was just for simplicity. Array.Diff is
still experimental, and it would have been annoying to wrap everything in ST or IO, so I just went
with maps for everything. Future versions could use more efficient data structures, but since the
point of this project was (1) to be a proof of concept and (2) to try to get a parallelization speedup,
it seemed fine to have the sequential code be a bit inefficient.

import qualified Data.Map as Map

2

The Value type represents both code and data in our small interpreted language. It only has
support for integers and functions, and the functions are all fexprs for simplicity.

data Value = IntVal Int

| PrimFunc String (Value → Thread Value)

| Lambda Int Value

| Variable Int

| FuncCall Value Value

instance Show Value where

show (IntVal x) = show x

show (PrimFunc name _) = name

show (Lambda var val) =
"(lambda var:" ++ show var ++ " " ++ show val ++ ")"

show (Variable var) = "var:" ++ show var

show (FuncCall f a) = "(" ++ show f ++ " " ++ show a ++ ")"

The following is just a helpful type alias, because there are lots of maps from integers to values.

type ValueMap = Map.Map Int Value

The following is our error type, which causes the evaluation of a thread to halt prematurely.
A different version of this code could have different EvalError constructors to allow for easier
inspection of what the code is doing, but for this first version I went with a single constructor.

data EvalError = EvalError

The WorldState type contains all of the state data a single thread of execution needs in order to
operate. The univMap is a read-only map from cell-number to value (which should be thought of
as an array), and is the same across all threads. The univSize field is the size of the universe,
i.e. the number of cells. The univEdits map contains the current thread’s edits to the universe
since the last time the different univMaps have been synchronized. When a cell’s value is queried,
it is first searched for in univEdits, and then in univMap. When a cell’s value is written to, it
is written in univEdits. The envMap contains the current thread’s local scope. This is unique to
each thread. This is mainly used for arguments and local variables. The randomGen field is the
random generator for the current thread. The generators for different threads are initialized with
different random seeds. Finally, the location of the cell the thread is currently evaluating is stored
in cellPos.

data WorldState = WorldState { univMap :: ValueMap,

univSize :: Int,

univEdits :: ValueMap,

envMap :: ValueMap,

randomGen :: StdGen,

cellPos :: Int,

evalTime :: Int }

deriving (Show)

A Thread is an identity coroutine (meaning it can be paused, but doesn’t generate a value until
it’s finished) that can fail with an EvalError, and always has a WorldState, even if it has failed.

newtype Thread a = Thread

(Coroutine Identity (ExceptT EvalError (StateT WorldState Identity)) a)

deriving (Functor,

Applicative,

Monad)

3

The following is a helper instance making it easier to access the internal WorldState.

instance MonadState WorldState Thread where

get = Thread $ lift $ get

put = Thread ◦ lift ◦ put

And as promised, here are the relevant NFData instances:

instance NFData (Thread a) where

rnf t = seq t ()

instance NFData EvalError where

rnf e = seq e ()

instance NFData Value where

rnf (IntVal x) = seq x ()

rnf (PrimFunc name f) = seq name $ seq f ()

rnf (Lambda var val) = seq var $ deepseq val ()

rnf (Variable var) = seq var ()

rnf (FuncCall f a) = deepseq f $ deepseq a ()

instance NFData WorldState where

rnf (WorldState { univMap,

univSize,

univEdits,

envMap,

randomGen,

cellPos,

evalTime }) = runEval $ do

rdeepseq univMap

rseq univSize

rdeepseq univEdits

rdeepseq envMap

rseq randomGen

rseq cellPos

rseq evalTime

return ()

We don’t need a MonadError instance since we never need to catch any errors, so this is essentially
just the throwError method from the MonadError typeclass.

throw :: EvalError → Thread a

throw = Thread ◦ lift ◦ throwError

As the name suggests, the pause function pauses the current thread.

pause :: Thread ()

pause = Thread $ suspend $ Identity $ return ()

The runThread function just runs the whole monad transformer and gets it into a form we can
work with directly. This is done at every step of execution.

type Unwrapped a = (Either EvalError (Either (Thread a) a), WorldState)

runThread :: WorldState → Thread a → Unwrapped a

runThread state (Thread t) =
unwrapId ◦ runIdentity ◦ flip runStateT state ◦ runExceptT ◦ resume $ t

where

4

unwrapId (Right (Left (Identity t)), s) = (Right $ Left $ Thread t, s)

unwrapId (Right (Right x), s) = (Right $ Right x, s)

unwrapId (Left err, s) = (Left err, s)

The following is just a helper function that lifts an action from the Rand monad to the Thread

monad.

liftRandom :: Rand StdGen a → Thread a

liftRandom rand = do

state ← get

let (x, g) = runRand rand $ randomGen state

put $ state { randomGen = g }

return x

5

2.2 State.lhs

This module contains some helper functions for dealing with the WorldState.

module State (

getVar,

setVar,

getCell,

setCell,

getCellPos,

setCellPos,

getSize,

resetEvalTime,

) where

import Value

import Control.Monad.State

import System.Random

import qualified Data.Map as Map

The getVar function just gets a variable from the local execution scope, or throws an error if it’s
not found.

getVar :: Int → Thread Value

getVar x = do

state ← get

case envMap state Map.!? x of

Just y → return y

Nothing → throw EvalError

The setVar function just sets a variable in the local execution scope.

setVar :: Int → Value → Thread ()

setVar x v = do

state ← get

put $ state { envMap = Map.insert x v $ envMap state }

The getCell function just gets the value of a cell from the universe, looking first in the current
thread’s edits and then in the read-only univMap. It causes the program to crash if the requested
cell is out of bounds.

getCell :: Int → Thread Value

getCell x = do

state ← get

return $ case univEdits state Map.!? x of

Just y → y

Nothing → univMap state Map.! x

The setCell function just sets the value of a cell in the thread’s local univEdits.

setCell :: Int → Value → Thread ()

setCell x v = do

state ← get

put $ state { univEdits = Map.insert x v $ univMap state }

6

The following just gets the index of the cell the current thread is evaluating. This is used for some
of the locality-sensitive builtin functions.

getCellPos :: Thread Int

getCellPos = do

state ← get

return $ cellPos state

The following just sets the index of the cell the current thread is evaluating.

setCellPos :: Int → Thread ()

setCellPos x = do

state ← get

put $ state { cellPos = x }

The following just gets the size of the universe, i.e. the total number of cells.

getSize :: Thread Int

getSize = do

state ← get

return $ univSize state

The following just resets the evalTime to 0. It is called when a thread starts evaluating a new cell.

resetEvalTime :: Thread ()

resetEvalTime = do

state ← get

put $ state { evalTime = 0 }

7

2.3 Eval.lhs

This module is very short, and only exists because it can’t go anywhere else. It only contains one
function, the eval function, which evaluates a value in the current thread.

module Eval (

eval,

) where

import Value

import State

eval :: Value → Thread Value

Values are all autoquoted, as in Lisp:

eval x@(IntVal _) = return x

eval x@(PrimFunc _ _) = return x

eval x@(Lambda _ _) = return x

Evaluating a variable just gets it from the local environment:

eval (Variable x) = getVar x

Evaluating a function is the only time the current thread gets paused, and it gets paused between
when the result is evaluated and when it is returned. Attempting to evaluate something that isn’t
a function kills the thread.

eval (FuncCall f a) = do

f’ ← eval f

case f’ of

PrimFunc _ g → do

y ← g a

pause

return y

Lambda x v → do

setVar x a

y ← eval v

pause

return y

_ → throw EvalError

8

2.4 Builtins.lhs

This module contains all the builtin functions that can be used. Hopefully I didn’t forget anything
that prevents the interpreter from being Turing-complete.

module Builtins (

primFuncs,

) where

import Value

import State

import Eval

There’s just one export, the primFuncs export, which is just a list of PrimFuncs.

primFuncs :: [Value]

primFuncs = [macro3 "if" ifFunc,

macro2 "define" define,

func1 "peek" peek,

func2 "poke" poke,

func2 "+" $ intOp (+),
func2 "-" $ intOp (-),

func2 "∗" $ intOp (∗),

func2 ">" $ intBoolOp (>),
func2 "<" $ intBoolOp (<),
func2 "=" $ intBoolOp (==),

func2 "&&" $ boolOp (&&),

func2 " | |" $ boolOp (| |),

func1 "eval" eval,

func1 "lambda-get-var" lambdaGetVar,

func1 "lambda-get-val" lambdaGetVal,

func2 "lambda-set-var" lambdaSetVar,

func2 "lambda-set-val" lambdaSetVal,

func1 "funccall-get-func" funcCallGetFunc,

func1 "funccall-get-arg" funcCallGetArg,

func2 "funccall-set-func" funcCallSetFunc,

func2 "funccall-set-arg" funcCallSetArg]

The following are just some helper functions that make defining multi-parameter functions and
macros easier. The difference is that functions automatically evaluate their parameters, but macros
do not. Fundamentally they’re both fexprs, the only reason there are both is to reduce repetition
in function definitions. There’s probably some crazy dependent-type way to make these helpers
work for functions of any arity, but since there are only two of each type, it seemed fine to do it by
hand.

func1 :: String → (Value → Thread Value) → Value

func1 name f = PrimFunc name $ λx → do

x’ ← eval x

f x’

9

func2 :: String → (Value → Value → Thread Value) → Value

func2 name f = PrimFunc name $ λx → return $

PrimFunc (name ++ "1") $ λy → do

x’ ← eval x

y’ ← eval y

f x’ y’

macro2 :: String → (Value → Value → Thread Value) → Value

macro2 name f = PrimFunc name $ λx → return $

PrimFunc (name ++ "1") $ λy →
f x y

macro3 :: String → (Value → Value → Value → Thread Value) → Value

macro3 name f = PrimFunc name $ λx → return $

PrimFunc (name ++ "1") $ λy → return $

PrimFunc (name ++ "2") $ λz →
f x y z

The following is just an if macro. There aren’t booleans in the language, so positive integers are
treated as true and negative ones as false.

ifFunc :: Value → Value → Value → Thread Value

ifFunc b thenExpr elseExpr = do

b’ ← eval b

case b’ of

IntVal x → if x > 0

then eval thenExpr

else eval elseExpr

_ → throw EvalError

The following is a macro that sets a local variable (recall that these are unique to each thread of
execution).

define :: Value → Value → Thread Value

define (Variable x) y = do

y’ ← eval y

setVar x y’

return y’

define _ _ = throw EvalError

The peek and poke functions read from and write to cells, respectively. The names are a reference
to early BASIC machines.

peek :: Value → Thread Value

peek (IntVal x) = do

n ← getSize

y ← getCellPos

getCell ((x + y) ‘mod‘ n)

peek _ = throw EvalError

poke :: Value → Value → Thread Value

poke (IntVal x) val = do

y ← getCellPos

n ← getSize

setCell ((x + y) ‘mod‘ n) val

return val

poke _ _ = throw EvalError

10

The intOp, intBoolOp, and boolOp functions are helpers for defining builtin binary operators on
integers and “bools”, which are also just integers. The operators that output booleans output 1
for true and 0 for false.

intOp :: (Int → Int → Int) → Value → Value → Thread Value

intOp op (IntVal x) (IntVal y) = return $ IntVal $ op x y

intOp _ _ _ = throw EvalError

intBoolOp :: (Int → Int → Bool) → Value → Value → Thread Value

intBoolOp op (IntVal x) (IntVal y) = return $ IntVal $

if op x y then 1 else 0

intBoolOp _ _ _ = throw EvalError

boolOp :: (Bool → Bool → Bool) → Value → Value → Thread Value

boolOp op (IntVal x) (IntVal y) = return $ IntVal $

if op (x > 0) (y > 0) then 1 else 0

boolOp _ _ _ = throw EvalError

The next few functions are for metaprogramming, allowing the construction and deconstruction of
lambdas and function calls. They should be helpful in allowing actual self-replication.

lambdaGetVar :: Value → Thread Value

lambdaGetVar (Lambda x _) = return $ Variable x

lambdaGetVar _ = throw EvalError

lambdaGetVal :: Value → Thread Value

lambdaGetVal (Lambda _ y) = return y

lambdaGetVal _ = throw EvalError

lambdaSetVar :: Value → Value → Thread Value

lambdaSetVar (Lambda _ y) (Variable x) = return $ Lambda x y

lambdaSetVar _ _ = throw EvalError

lambdaSetVal :: Value → Value → Thread Value

lambdaSetVal (Lambda x _) y = return $ Lambda x y

lambdaSetVal _ _ = throw EvalError

funcCallGetFunc :: Value → Thread Value

funcCallGetFunc (FuncCall f _) = return f

funcCallGetFunc _ = throw EvalError

funcCallGetArg :: Value → Thread Value

funcCallGetArg (FuncCall _ a) = return a

funcCallGetArg _ = throw EvalError

funcCallSetFunc :: Value → Value → Thread Value

funcCallSetFunc (FuncCall _ a) f = return $ FuncCall f a

funcCallSetFunc _ _ = throw EvalError

funcCallSetArg :: Value → Value → Thread Value

funcCallSetArg (FuncCall f _) a = return $ FuncCall f a

funcCallSetArg _ _ = throw EvalError

11

2.5 Mutate.lhs

This module contains actions that mutate contents of cells and generate new random values. The
actions are all in the Rand monad instead of in the Thread monad because they only need the
random generator, not any other part of the WorldState, so it would have been overkill to give
them an entire Thread coroutine. Also because they’re not just used from within the Thread

monad, but are also used for initializing the universe at the beginning of execution.

module Mutate (

mutate,

randomValue,

) where

import Value

import State

import Builtins

import System.Random

import Control.Monad.Random

The following is just a helper type alias for the monad we’re going to be doing everything in.

type RandM = Rand StdGen

The following represents the probability that any mutation is going to occur this step.

mutateP :: Double

mutateP = 0.01

The following represents the probability that the parameter of a Lambda, as opposed to its body,
will be mutated.

mutateParP :: Double

mutateParP = 0.2

The following is the probability that a function, as opposed to its argument, will be mutated in a
function call.

mutateFuncP :: Double

mutateFuncP = 0.3

The following is the probability that an entirely new random value will be generated, as opposed
to the differential modifications that are otherwise performed.

mutateTypeP :: Double

mutateTypeP = 0.1

When an int is mutated, it is randomly incremented or decremented with equal probability.

mutateInt :: Int → RandM Int

mutateInt x = do

b ← getRandom

return $ if b then x + 1 else x - 1

When a new integer is generated, it is selected from the range [−5, 5].

randInt :: RandM Int

randInt = getRandomR (-5, 5)

randIntVal :: RandM Value

randIntVal = randInt >>= return ◦ IntVal

12

When a new primitive function is generated, it is selected at random from the list of primitive
functions.

randPrimFunc :: RandM Value

randPrimFunc = do

i ← getRandomR (0, length primFuncs - 1)

return $ primFuncs !! i

When a new lambda is generated, its parameter is a random integer from the range [−5, 5], and its
body is a randomly generated value.

randLambda :: RandM Value

randLambda = do

x ← randInt

v ← randomValue

return $ Lambda x v

When a variable is generated, it is selected at random from the range [−5, 5].

randVariable :: RandM Value

randVariable = randInt >>= return ◦ Variable

When a function call is generated, both the function and the argument are randomly generated
values. If the function is an integer this will result in the thread crashing, but that’s sufficiently
low probability that it wouldn’t have been worth making a separate random function generator.

randFuncCall :: RandM Value

randFuncCall = do

f ← randomValue

a ← randomValue

return $ FuncCall f a

The mutateInplace function just puts together all of the above probabilities and mutators and
applies them to an arbitrary value.

mutateInplace :: Value → RandM Value

mutateInplace (IntVal x) = mutateInt x >>= return ◦ IntVal
mutateInplace (PrimFunc _ _) = randPrimFunc

mutateInplace (Lambda x v) = do

b ← getRandom

if b < mutateParP then do

x’ ← mutateInt x

return $ Lambda x’ v

else do

v’ ← mutateInplace v

return $ Lambda x v’

mutateInplace (Variable x) = mutateInt x >>= return ◦ Variable
mutateInplace (FuncCall f a) = do

b ← getRandom

if b < mutateFuncP then do

f’ ← mutateInplace f

return $ FuncCall f’ a

else do

a’ ← mutateInplace a

return $ FuncCall f a’

When a new random value is required, its type is selected at random from the 5 different possible
types (ints, primitive functions, lambdas, variables, and function calls), with equal probability. A

13

different version of the code could have different probabilities for each of the types, but there are
already a lot of parameters to deal with, and it’s not clear how these probabilities should deviate
from uniform for better performance.

randomValue :: RandM Value

randomValue = do

b ← getRandomR (0, 4)

case b :: Int of

0 → randIntVal

1 → randPrimFunc

2 → randLambda

3 → randVariable

4 → randFuncCall

The mutateValue function just generates a new random value with probability mutateTypeP, and
mutates the existing value otherwise.

mutateValue :: Value → RandM Value

mutateValue x = do

b ← getRandom

if b < mutateTypeP then randomValue

else mutateInplace x

When we mutate a thread, we first check whether any mutations are going to occur (probability
mutateP), and if so, we pick a random cell to mutate, and then mutate it.

mutate :: Thread ()

mutate = do

b ← liftRandom getRandom

when (b < mutateP) $ do

n ← getSize

i ← liftRandom $ getRandomR (0, n - 1)

x ← getCell i

x’ ← liftRandom $ mutateValue x

setCell i x’

14

2.6 Rep.lhs

This module contains the heart and soul of the simulator, the code that sets up the initial state,
and the code that takes a state and runs one step of simulation on it. That is, this module contains
the initial value and the update rule of the dynamical system we’re building.

module Rep (

runStep,

runN,

) where

import Value

import State

import Eval

import Mutate

import Control.Monad.Random

import Control.Parallel.Strategies

import qualified Data.Map as Map

The randomThread function assigns a thread to a random cell to evaluate, and starts it evaluating
that random cell.

randomThread :: Thread Value

randomThread = do

n ← getSize

i ← liftRandom $ getRandomR (0, n - 1)

setCellPos i

resetEvalTime

cell ← getCell i

eval cell

To run a step of simulation, we tell the threads to mutate the universe, and then we run the threads
for one step of execution, randomly restart any threads that have finished evaluating their assigned
cells, then merge edits to the universe and write the results back to the thread states. In terms of
parallelization, it is relatively straightforward, just doing a parallel map over the runThreads.

runStep :: ([WorldState], [Thread Value]) → ([WorldState], [Thread Value])

runStep (states, threads) = (states’’, threads’’) where

evalList = [runThread s (mutate >> t) | (s, t) ← zip states threads]

(threads’, states’) = unzip (evalList ‘using‘ parList rdeepseq)

restartThread (Left err) = randomThread

restartThread (Right (Left t)) = t

restartThread (Right (Right _)) = randomThread

threads’’ = map restartThread threads’

univ = univMap $ head states

univ’ = Map.union (Map.unions $ map univEdits states’) univ

updateState state = state { univMap = univ’,

univEdits = Map.empty,

evalTime = evalTime state + 1 }

states’’ = map updateState states’

At the beginning of the simulation, we set each cell to a random value, generate some random seeds
to give each thread a different random generator, and start each thread on evaluating a random
cell.

15

initialize :: Int → Int → Int → ([WorldState], [Thread Value])

initialize nCells nThreads seed = (states, threads) where

rand = do

cells ← sequence $ replicate nCells randomValue

seeds ← sequence $ replicate nThreads getRandom

return (cells, seeds)

(cells, seeds) = evalRand rand $ mkStdGen seed

univ = Map.fromList $ zip [0..] cells

makeState s = WorldState { univMap = univ,

univSize = nCells,

univEdits = Map.empty,

envMap = Map.empty,

randomGen = mkStdGen s,

cellPos = 0,

evalTime = 0 }

states = [makeState s | s ← seeds]

threads = replicate nThreads randomThread

The following is just a helper function that will run the simulation for n steps, and output the
longest evaluation times for each thread.

runN :: Int → Int → Int → Int → [Int]

runN nCells nThreads seed n =
runN’ (initialize nCells nThreads seed) (replicate nThreads 0) n where

runN’ state maxs 0 = maxs

runN’ state maxs m = runN’ (states, threads) maxs’ (m - 1) where

(states, threads) = runStep state

maxs’ = [max (evalTime s) m | (s, m) ← zip states maxs]

16

3 Results and Discussion

Empirically, parallelization helps a decent amount, though definitely far from linear. A simple
experiment with 100 cells, 100 threads of execution, and running for 10000 steps took 5.49 seconds
to run in a single Haskell Execution Context (HEC), 5.16 seconds to run on two HECs, and 2.96
seconds to run on three HECs. Studying the eventlog, it seems that the main difficulty is that
each step of work is so small (basically just evaluating a single function call with depth 1) that
the overhead of sending the work to an HEC is comparable to the actual work of evaluating the
expression.

One way of making the algorithm more parallelizable in the future could be to pause execution
more infrequently, for example by pausing with stochastically with some fixed probability, say 10%.
Then each thunk would give the HECs more work to do. On the other hand, this would cause some
thunks to take much longer to evaluate than others, and since the different steps of simulation are
necessarily synchronized in lock-step, this could leave some HECs starved, unless there are many
more threads of execution than HECs.

As for whether or not self-replication emerged, unfortunately it seems it did not in this first
version. In fact, the longest expression took just 7 steps to evaluate, indicating that the simulation
did not even discover recursion. The probable cause for this is that there were too many builtin
functions; future versions of the simulator could try to simplify the language used in the interpreter
to make recursion easier to discover. Other improvements could be to use Array.Diff instead of
maps for the universe, or perhaps the ST monad, to speed up the number of steps per second that
the simulator is able to run, enabling the simulator to run for longer and allowing more complex
behaviors to emerge.

17

