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2048 is a single person game where you try to maximize your score by 
combining numbered tiles of the same value on a 4x4 square grid without letting it 
completely fill up. Your score in the game is roughly the sum of all the tile values on the 
grid, so it’s roughly proportional to how long you survive in the game. As the tiles spawn 
randomly, it is possible to build an agent that plays this game using adversarial search, 
modelling the random tile appearances instead as the deliberate choices of an 
opponent trying to make you lose as quickly as possible. To play against this, the agent 
can choose their moves with an alpha-beta pruning minimax algorithm to try to survive 
as long as possible by choosing the best-worst case scenario possible over agent 
moves and tile placements. As the alpha-beta minimax algorithm is a recursive tree 
search, it is well suited to be implemented in Haskell (while the overall game could be 
represented by a State monad where both the agent’s move choice and the random tile 
generation are the alternating transitions from state to state). However, a full tree search 
for each move is impossible as the game is not finite (or at least of a depth where a full 
tree would be impossible to generate), so a heuristic function is needed to estimate how 
good a given board state is at a particular depth down the tree. This heuristic is hard to 
directly code, as there are many possible measures of how good a state could be (such 
as tile value only increasing in a given direction, having closer neighboring tile values, 
having full rows and corners, etc), so tuning the weights or exponents given to these 
different measures  is needed to result in an agent that can play well. As there is a 
random component to the actual tile placements in the game, averaging the scores of a 
few games played with a given set of heuristic weights is needed to get an accurate 
measure of the quality of that hyperparameter set. 

Rather than doing this manually or through grid search, as the search space of 
weights and exponents is continuous rather than discrete, finite, and/or convex, a 
genetic algorithm can be used to evolve continuously improving sets of parameters. 
This could work by starting with a fixed number of random or chosen parameter sets, 
from which more could be chosen by combining two previous parameter sets (swapping 
a random subset of parameters) and then giving each individual parameter a chance of 
mutating a bit from its current value. The fitness of each generated parameter set could 



be tested by running a few games as above with that set of weights, then averaging the 
scores. Parameter sets that don’t perform well enough would be eliminated, while 
well-performing sets would be used to generate successors in proportion to their relative 
performance. Rather than using fixed generations, the genetic algorithm could be run by 
maintaining a set of a fixed number of the best performing parameter sets encountered 
so far. A new parameter set could be generated by choosing two random parents (with 
probability proportional to performance), combining them, then mutating slightly. This 
new parameter set would be testing by averaging the score over multiple games, then 
added into the list of the best encountered parameter sets. The worst performing set 
would be dropped, enforcing selection of the better performing heuristics. There will be 
a small chance for an underperforming candidate to be kept in favor of one of the top 
performing candidates, in order to incentivize exploration of different candidates and 
avoid the algorithm getting “stuck” in a local maxima. Furthermore, as testing a given 
candidate parameter set is independent of any other parameter set, multiple candidates 
could be tested in parallel at a given time. As each test finishes, it’s set would be 
merged into the best performing as described above and a newly generated candidate 
could take its place, so the fixed generations of traditional genetic search would be 
replaced with continuous parallel testing and selection. A log of the best performing 
parameters could be maintained as the algorithm runs, so it could be stopped at any 
point and return the best possible parameters so far (or it could run until convergence, 
although given that genetic search can be slow and is not guaranteed to be optimal, no 
convergence is guaranteed in a given time frame). 


