SVBoy

Game Boy Specs

CPU: Custom 8-bit Sharp LR35902 at 4.19 MHz . This processor is similar to an Intel 8080 in that none of the registers introduced in the $\mathbb{Z 8 0}$ are present. However, some of the Z80's instruction set enhancements over the 8080, particularly bit manipulation, are present. Features removed from the Intel 8080 instruction set include the parity flag, half of the conditional jumps, and I/O instructions. I/O is instead performed through memory load/store instructions. Still, several features are added relative to both the 8080 and the Z80, most notably new load/store instructions to optimize access to memory mapped registers. The IC also contains integrated sound generation
RAM: 8 KiB internal S-RAM
Video RAM: 8 KiB internal
ROM: On-CPU-Die 256-byte bootstrap; 32 KiB cartridges (Without MBC, 64 MiB Max with MBC5)
Sound: 2 pulse wave generators, 1 PCM 4-bit wave sample (644 -bit samples played in 1×64 bank or 2×32 bank) channel, 1 noise generator, and one audio input from the cartridge. The unit only has one speaker, but the headphone port outputs stereo sound
Display: Reflective STN LCD 160×144 pixels
Frame rate: Approximately 59.7 frames per second
Vertical blank duration: Approx 1.1 ms

Screen size: 66 mm (2.6 in) diagonal

Color palette: 2-bit

Communication: 2 Game Boys can be linked together via built-in serial ports, up to 4 with a DMG-07 4player adapter. And 16 in maximum.
Power: $6 \mathrm{~V}, 0.7 \mathrm{~W}$ (4 AA batteries provide approximately 15 hours of gameplay) ${ }^{[28]}$
Dimensions: $90 \mathrm{~mm}(\mathrm{~W}) \times 148 \mathrm{~mm}(\mathrm{H}) \times 32 \mathrm{~mm}(\mathrm{D}) / 3.5^{\prime \prime} \times 5.8^{\prime \prime} \times 1.3^{\prime \prime}[28]$
Weight: 220 g ${ }^{[30]}$

NA Release Date: July 31, 1989

Game Boy Memory Map

\square	-	
0000	40008000	FFFF
	GameBoy Memory Areas	
\$FFFF	Interrupt Enable Flag	
\$FF80-\$FFFE	Zero Page - 127 bytes	
\$FF00-SFF7F	Hardware I/O Registers	
\$FEA0-SFEFF	Unusable Memory	
\$FE00-\$FE9F	OAM - Object Attribute Memory	
\$E000-\$FDFF	Echo RAM - Reserved, Do Not Use	
\$D000-\$DFFF	Internal RAM - Bank 1-7 (switchable - CGB only)	
\$C000-\$CFFF	Internal RAM - Bank 0 (fixed)	
\$A000-\$BFFF	Cartridge RAM (If Available)	
\$9C00-\$9FFF	BG Map Data 2	
\$9800-S9BFF	BG Map Data 1	
\$8000-\$97FF	Character RAM	
\$4000-\$7FFF	Cartridge ROM - Switchable Banks 1-xx	
\$0150-\$3FFF	Cartridge ROM - Bank 0 (fixed)	
\$0100-\$014F	Cartridge Header Area	
\$0000-\$00FF	Restart and Interrupt Vectors	

System Block Diagram

GB-Z80 Specs

- 8-bit DATA, 16 -bit ADDR, Support 16-bit data operations
- CISC, Similar to the Z-80 Processor
- 4.194304 MHz (2^22 Hz) clock frequency (1 T -Cycle $=1 / 2^{\wedge} 22$ second)
- One Instruction takes 1-5 M-Cycle to execute (1 M-Cycle = 4 T-Cycle)
- 512 Possible Instructions
- 5 Interrupt Service Routines
- 127×8 bits built-in RAM (Stack)

RISC Approach

CALL nn

Unconditional function call to the absolute address specified by the operand n n.
Opcode + data $0 b 11001101+$ LSB of $n n+$ MSB of $n n$
Length
3 bytes
Duration 6 machine cycles
Flags
Timing
Pseudocode

opcode $=$ read(PC++
if opcode == 0xCD:
$\mathrm{nn}=$ unsigned_16(lsb=read(PC++), msb=read(PC++))
write(--SP, msb(PC))
write(--SP, lsb(PC))
$\mathrm{PC}=\mathrm{nn}$
define DECODER_CALL_al6 \}
begin \backslash
RISC_OPCODE[2] = LD_XPC;
RISC_OPCODE[3] = LD_TPC;
RISC_OPCODE[5] = DEC_SP;
RISC_OPCODE[6] = LD_SPPCh; \backslash
RISC_OPCODE[7] = DEC_SP;
RISC_OPCODE [8] = LD_SPPC1; \backslash
RISC_OPCODE[9] = JP_TX;
NUM_Tcnt $=6$ 'd24;
end

Game Boy: Complete Technical Reference, gekkio https://gekkio.fi

Interrupt Handling

```
8. FFOF (IF)
    Name - IF
    Contents - Interrupt Flag (R/W)
        Bit 4: Transition from High to Low of Pin
        Bit 3: Serial I/0 transfer complete
    *it 1. LCDC (see STAT)
    Bit 1: LCDC (see S
43. FFFF (IE)
    Name -
    Name - - IE 
                            Bit 4: Transition from High to Low of Pin
            Bit 3: number P10-P13.
            Bit 3: Serial I/0 transfer complete
            Bit 2: Timer 0verflow
            Bit 1: LCDC (se
\begin{tabular}{|c|c|c|c|}
\hline Interrupt & Priority & Start & Address \\
\hline V - Blank & 1 & \$0040 & \\
\hline LCDC Status & 2 & \$0048 & - Modes 0, 1, 2 LYC=LY coincide (sel ectable) \\
\hline Timer 0verflow & 3 & \$0050 & \\
\hline Serial Transfer & 4 & \$0058 & when transfer \\
\hline Hi - Lo of P10-P13 & 5 & \$006 & \\
\hline
\end{tabular}
`define DECODER_INTR(addr)\
begin \
```

```
    RISC_OPCODE[0] = DI; 
        RISC_OPCODE[1] = DEC_SP;
        RISC_OPCODE[2] = LD_SPPCh; 
        RISC_OPCODE[3] = LATCH_INTQ; \
        RISC-OPCODE[4] = RST IF ;
        RISC_ORCOD[4] = RSI_IF;
        RISC_OPCODE[5] = DEC_SP;
        RISC_OPCODE[6] = LD_SPPCl;
        RISC_OPCODE[7] = RST_``addr; \
        NUM_Tcnt = 6'd20; \
end
```

Interrupt =
IME \&\& (FFOF \& FFFF) != 0

Single Port RAMs

- Work RAM / Video RAM : 8192 Bytes
- OAM : 160 Bytes
- Quartus Single Port RAM Template
- Data available on the second half of the same clock cycle

Video Specs

- Screen: 160x144 px
- Background: 256×256 px or 32×32 tiles (8×8 px each), scrollable
- Window: 160x144 px Max, non-scrollable
- Sprite: 8×8 px or 8×16 px Up to 40 in OAM Up to 10 per line

Tile Rendering

Region	Usage
$8000-87 \mathrm{FF}$	Tile set \#1: tiles 0-127
$8800-8 \mathrm{FFF}$	Tile set \#1: tiles 128-255 Tile set \#0: tiles -1 to -128
$9000-97 \mathrm{FF}$	Tile set \#0: tiles 0-127
9800-9BFF	Tile map \#0 (1024 entries)
$9000-9 F F F$	Tile map \#1 (1024 entries)

Background Mapping

Color Rendering

Value	Pixel	Mapped color
0	Off	$[226,243,228]$
1	33% on	$[148,227,68]$
2	66% on	$[70,135,143]$
3	On	$[51,44,80]$

Tile data bitmap structure

Video Timing

Frame Buffer

- $160 \times 144 \times 2$ bits SRAM
- 2-Port, 2-Clock
- Write Clock: GameBoy Clock @ 4.19MHz
- Read Clock: VGA Clock @108MHz
- No Vertical Sync

Background/Window Rendering

$B G, S C X=0, S C Y=0, F F 40[4]=1, F F 40[3]=0, L Y=0$

PX SHIFT REG A

PX SHIFT REG B

FF40
Name - LCDC (value $\$ 91$ at reset)
Contents - LCD Control (R/W)
Bit 6 - Window Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF
Bit 4-BG \& Window Tile Data Select
0 : \$8800-\$97FF
1: \$8000-\$8FFF <- Same area as OBJ
Bit 3 - BG Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF

Background/Window Rendering

$B G, S C X=0, S C Y=0, F F 40[4]=1, F F 40[3]=0, L Y=0$

PX SHIFT REG A

PX SHIFT REG B

FF40
Name - LCDC (value $\$ 91$ at reset)
Contents - LCD Control (R/W)
Bit 6 - Window Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF
Bit 4-BG \& Window Tile Data Select
0: \$8800-\$97FF
1: \$8000-\$8FFF <- Same area as OBJ
Bit 3 - BG Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF

Background/Window Rendering

$B G, S C X=0, S C Y=0, F F 40[4]=1, F F 40[3]=0, L Y=0$

PX SHIFT REG A

PX SHIFT REG B

FF40
Name - LCDC (value $\$ 91$ at reset)
Contents - LCD Control (R/W)
Bit 6 - Window Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF
Bit 4-BG \& Window Tile Data Select
0: \$8800-\$97FF
1: \$8000-\$8FFF <- Same area as OBJ
Bit 3 - BG Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF

Background/Window Rendering

$B G, S C X=0, S C Y=0, F F 40[4]=1, F F 40[3]=0, L Y=0$

PX SHIFT REG A

PX SHIFT REG B

FF40
Name - LCDC (value $\$ 91$ at reset)
Contents - LCD Control (R/W)
Bit 6 - Window Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF
Bit 4-BG \& Window Tile Data Select
0 : \$8800-\$97FF
1: \$8000-\$8FFF <- Same area as OBJ
Bit 3 - BG Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF

Background/Window Rendering

$B G, S C X=0, S C Y=0, F F 40[4]=1, F F 40[3]=0, L Y=0$

PX SHIFT REG A

PX SHIFT REG B

FF40
Name - LCDC (value $\$ 91$ at reset)
Contents - LCD Control (R/W)
Bit 6 - Window Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF
Bit 4-BG \& Window Tile Data Select
0: \$8800-\$97FF
1: \$8000-\$8FFF <- Same area as OBJ
Bit 3 - BG Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF

Background/Window Rendering

$B G, S C X=0, S C Y=0, F F 40[4]=1, F F 40[3]=0, L Y=0$

PX SHIFT REG A

PX SHIFT REG B

FF40
Name - LCDC (value $\$ 91$ at reset)
Contents - LCD Control (R/W)
Bit 6 - Window Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF
Bit 4-BG \& Window Tile Data Select
0: \$8800-\$97FF
1: \$8000-\$8FFF <- Same area as OBJ
Bit 3 - BG Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF

Background/Window Rendering

$B G, S C X=0, S C Y=0, F F 40[4]=1, F F 40[3]=0, L Y=0$

PX SHIFT REG A

PX SHIFT REG B

FF40
Name - LCDC (value $\$ 91$ at reset)
Contents - LCD Control (R/W)
Bit 6 - Window Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF
Bit 4-BG \& Window Tile Data Select
0: \$8800-\$97FF
1: \$8000-\$8FFF <- Same area as OBJ
Bit 3 - BG Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF

Background/Window Rendering

$B G, S C X=0, S C Y=0, F F 40[4]=1, F F 40[3]=0, L Y=0$

PX SHIFT REG A

PX SHIFT REG B

FF40
Name - LCDC (value $\$ 91$ at reset)
Contents - LCD Control (R/W)
Bit 6 - Window Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF
Bit 4-BG \& Window Tile Data Select
0: \$8800-\$97FF
1: \$8000-\$8FFF <- Same area as OBJ
Bit 3 - BG Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF

Background/Window Rendering

$B G, S C X=0, S C Y=0, F F 40[4]=1, F F 40[3]=0, L Y=0$

PX SHIFT REG A

PX SHIFT REG B

FF40
Name - LCDC (value $\$ 91$ at reset)
Contents - LCD Control (R/W)
Bit 6 - Window Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF
Bit 4-BG \& Window Tile Data Select
0: \$8800-\$97FF
1: \$8000-\$8FFF <- Same area as OBJ
Bit 3 - BG Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF

Background/Window Rendering

$B G, S C X=0, S C Y=0, F F 4 O[4]=1, F F 4 O[3]=0, L Y=0$

PX SHIFT REG A

PX SHIFT REG B

FF40
Name - LCDC (value $\$ 91$ at reset)
Contents - LCD Control (R/W)
Bit 6 - Window Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF
Bit 4-BG \& Window Tile Data Select
0: \$8800-\$97FF
1: \$8000-\$8FFF <- Same area as OBJ
Bit 3 - BG Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF

Background/Window Rendering

$B G, S C X=3, S C Y=0, F F 40[4]=1, F F 40[3]=0, L Y=0$

PX SHIFT REG A

PX SHIFT REG B

FF40
Name - LCDC (value $\$ 91$ at reset)
Contents - LCD Control (R/W)
Bit 6 - Window Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF
Bit 4-BG \& Window Tile Data Select
0 : \$8800-\$97FF
1: \$8000-\$8FFF <- Same area as OBJ
Bit 3 - BG Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF

Background/Window Rendering

$B G, S C X=3, S C Y=0, F F 40[4]=1, F F 40[3]=0, L Y=0$

PX SHIFT REG A

PX SHIFT REG B

FF40
Name - LCDC (value $\$ 91$ at reset)
Contents - LCD Control (R/W)
Bit 6 - Window Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF
Bit 4-BG \& Window Tile Data Select
0: \$8800-\$97FF
1: \$8000-\$8FFF <- Same area as OBJ
Bit 3 - BG Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF

Background/Window Rendering

$B G, S C X=3, S C Y=0, F F 40[4]=1, F F 40[3]=0, L Y=0$

PX SHIFT REG A

PX SHIFT REG B

FF40
Name - LCDC (value $\$ 91$ at reset)
Contents - LCD Control (R/W)
Bit 6 - Window Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF
Bit 4-BG \& Window Tile Data Select
0 : \$8800-\$97FF
1: \$8000-\$8FFF <- Same area as OBJ
Bit 3 - BG Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF

Background/Window Rendering

$B G, S C X=0, S C Y=0, F F 40[4]=1, F F 40[3]=0, L Y=0$

PX SHIFT REG A

PX SHIFT REG B

FF40
Name - LCDC (value $\$ 91$ at reset)
Contents - LCD Control (R/W)
Bit 6 - Window Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF
Bit 4-BG \& Window Tile Data Select
0: \$8800-\$97FF
1: \$8000-\$8FFF <- Same area as OBJ
Bit 3 - BG Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF

Background/Window Rendering

$B G, S C X=0, S C Y=0, F F 40[4]=1, F F 40[3]=0, L Y=0$

PX SHIFT REG A

PX SHIFT REG B

FF40
Name - LCDC (value $\$ 91$ at reset)
Contents - LCD Control (R/W)
Bit 6 - Window Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF
Bit 4-BG \& Window Tile Data Select
0: \$8800-\$97FF
1: \$8000-\$8FFF <- Same area as OBJ
Bit 3 - BG Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF

Background/Window Rendering

$B G, S C X=0, S C Y=0, F F 40[4]=1, F F 40[3]=0, L Y=0$

PX SHIFT REG A

PX SHIFT REG B

FF40
Name - LCDC (value $\$ 91$ at reset)
Contents - LCD Control (R/W)
Bit 6 - Window Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF
Bit 4-BG \& Window Tile Data Select
0: \$8800-\$97FF
1: \$8000-\$8FFF <- Same area as OBJ
Bit 3 - BG Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF

Background/Window Rendering

$B G, S C X=0, S C Y=0, F F 40[4]=1, F F 40[3]=0, L Y=0$

PX SHIFT REG A

PX SHIFT REG B

FF40
Name - LCDC (value $\$ 91$ at reset)
Contents - LCD Control (R/W)
Bit 6 - Window Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF
Bit 4-BG \& Window Tile Data Select
0: \$8800-\$97FF
1: \$8000-\$8FFF <- Same area as OBJ
Bit 3 - BG Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF

Background/Window Rendering

$B G, S C X=0, S C Y=0, F F 40[4]=1, F F 40[3]=0, L Y=0$

PX SHIFT REG A

PX SHIFT REG B

FF40
Name - LCDC (value $\$ 91$ at reset)
Contents - LCD Control (R/W)
Bit 6 - Window Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF
Bit 4-BG \& Window Tile Data Select
0: \$8800-\$97FF
1: \$8000-\$8FFF <- Same area as OBJ
Bit 3 - BG Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF

Background/Window Rendering

$B G, S C X=0, S C Y=0, F F 40[4]=1, F F 40[3]=0, L Y=0$

PX SHIFT REG A

PX SHIFT REG B

FF40
Name - LCDC (value $\$ 91$ at reset)
Contents - LCD Control (R/W)
Bit 6 - Window Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF
Bit 4-BG \& Window Tile Data Select
0: \$8800-\$97FF
1: \$8000-\$8FFF <- Same area as OBJ
Bit 3 - BG Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF

Background/Window Rendering

$B G, S C X=0, S C Y=0, F F 4 O[4]=1, F F 4 O[3]=0, L Y=0$

PX SHIFT REG A

PX SHIFT REG B

FF40
Name - LCDC (value $\$ 91$ at reset)
Contents - LCD Control (R/W)
Bit 6 - Window Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF
Bit 4-BG \& Window Tile Data Select
0: \$8800-\$97FF
1: \$8000-\$8FFF <- Same area as OBJ
Bit 3 - BG Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF

Background/Window Rendering

$B G, S C X=0, S C Y=0, F F 4 O[4]=1, F F 4 O[3]=0, L Y=0$

PX SHIFT REG A

PX SHIFT REG B

FF40
Name - LCDC (value $\$ 91$ at reset)
Contents - LCD Control (R/W)
Bit 6 - Window Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF
Bit 4-BG \& Window Tile Data Select
0: \$8800-\$97FF
1: \$8000-\$8FFF <- Same area as OBJ
Bit 3 - BG Tile Map Display Select
0: \$9800-\$9BFF
1: $\$ 9 \mathrm{COO}-\$ 9 \mathrm{FFF}$

Background/Window Rendering

$B G, S C X=0, S C Y=0, F F 40[4]=1, F F 40[3]=0, L Y=0$

PX SHIFT REG A

PX SHIFT REG B

FF40
Name - LCDC (value $\$ 91$ at reset)
Contents - LCD Control (R/W)
Bit 6 - Window Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF
Bit 4-BG \& Window Tile Data Select
0: \$8800-\$97FF
1: \$8000-\$8FFF <- Same area as OBJ
Bit 3 - BG Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF

Background/Window Rendering

$B G, S C X=0, S C Y=0, F F 40[4]=1, F F 40[3]=0, L Y=0$

PX SHIFT REG A

PX SHIFT REG B

FF40
Name - LCDC (value $\$ 91$ at reset)
Contents - LCD Control (R/W)
Bit 6 - Window Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF
Bit 4-BG \& Window Tile Data Select
0: \$8800-\$97FF
1: \$8000-\$8FFF <- Same area as OBJ
Bit 3 - BG Tile Map Display Select
0: \$9800-\$9BFF
1: \$9C00-\$9FFF

OAM Search

1. Iterate through all 40 entries in OAM
2. Read Byte0, to see if it is on the current line
3. If it is, store Byte1 and its position in OAM in a local OAM

X pos	Pattern $\#$	OAM pos	Flag	Used?
20	TBD	0	TBD	No
10	TBD	1	TBD	No
30	TBD	2	TBD	No
36	TBD	4	TBD	No
78	TBD	17	TBD	No
255	255	64	TBD	No
255	255	64	TBD	No

Local OAM

Byte0 Y position on the screen
Byte1 X position on the screen
Byte2 Pattern number 0-255 (Unlike some tile numbers, sprite pattern numbers are unsigned. LSB is ignored (treated as 0) in 8×16 mode.)
Byte3 Flags:

Bit7 Priority

If this bit is set to 0 , sprite is displayed on top of background $\&$ window. If this bit is set to 1 , then sprite will be hidden behind colors 1,2 , and 3 of the background $\&$ window. (Sprite only prevails over color 0 of BG \& win.) Bit6 Y flip

Sprite pattern is flipped vertically if this bit is set to 1 .
Bit5 X flip
Sprite pattern is flipped horizontally if this bit is set to 1 .
Bit4 Palette number
Sprite colors are taken from OBJ1PAL if this bit is set to 1 and from OBJOPAL otherwise.

OAM DMA

Sprite Rendering

$$
B G, S C X=0, S C Y=0, F F 40[4]=1, F F 4 O[3]=0, L Y=0
$$

 PX SHIFT REG A

$$
L X=10
$$

Frame Buffer

X pos	Pattern \#	OAM pos	Flag	Used?			
20	TBD	0	TBD	No	PX SHIFT REG B		
10	TBD	1	TBD	No			
30	TBD	2	TBD	No			
36	TBD	4	TBD	No			
78	TBD	17	TBD	No			
255	255	64	TBD	No	SP SHIFT REG 0		
255	255	64	TBD	No			

Sprite Rendering

$$
B G, S C X=0, S C Y=0, F F 40[4]=1, F F 40[3]=0, L Y=0
$$

$$
L X=10
$$

Frame Buffer

X pos	Pattern \#	OAM pos	Flag	Used?			
20	TBD	0	TBD	No	PX SHIFT REG B		
10	100	1	TBD	No			
30	TBD	2	TBD	No			
36	TBD	4	TBD	No			
78	TBD	17	TBD	No			
255	255	64	TBD	No	SP SHIFT REG 0		
255	255	64	TBD	No			

Sprite Rendering

$$
B G, S C X=0, S C Y=0, F F 40[4]=1, F F 40[3]=0, L Y=0
$$

 PX SHIFT REG A

$$
L X=10
$$

Frame Buffer

Cartridge

- Max 64MByte ROM + 1MByte RAM
- On Board SDRAM @ 67.108864 MHz (16x GameBoy Clock)
- Intel SDRAM Controller IP is used
- Emulated SRAM Behavior

SDRAM Controller Intel FPGA IP

Memory Profile Timing

CAS latency cycles::
$\bigcirc 1$
$\bigcirc 2$
(-) 3
Initialization refresh cycles:
Issue one refresh command every: Delay after powerup, before initialization:

Duration of refresh command (t _rfc): Duration of precharge command (t _rp): ACTIVE to READ or WRITE delay (t_rcd):

Access time (t_ac):

2	
7.8125	
100.0	us
70.0	us
15.0	ns
15.0	ns
5.4	ns
14.0	ns

Timer

Sound

- 4 Channels
- A square wave ("pulse") channel that perform frequency sweeps
- A second square wave channel that can only play a constant frequency
- A noise channel
- An arbitrary wave channel
-4 Bit Raw Resolution
- On Chip CODEC @ 16Bit 48KHz

Square Wave Channel

Timer -> Duty -> Length Counter -> Envelope -> Mixer

Square Wave Channel With Sweep

Sweep -> Timer -> Duty -> Length Counter -> Envelope -> Mixer

Noise Channel

7-Stages LFSR implementing a $x^{7}+x+1$ binary polynomial counter

Timer -> LFSR -> Length Counter -> Envelope -> Mixer

Wave Channel

Joypad - Hardware

http://gbdev.gg8.se/wiki/articles/DMG Schematics

Nintendo. Game Boy Programming Manual

Joypad - Implementation

- Device driver to send joypad register status
- User space program can configure any USB keyboard keys (except ESC and modifiers) as joypad keys
- SPACE key is reserved for double speed
- Sends joypad status to kernel if any configured joypad keys are pressed

Cartridge - ROM and RAM

- ROM files are downloaded online
- ROM contents are loaded to SDRAM on the DE1-SoC via mmap
- The real Game Boy saves data in RAM on the cartridge, powered by its own battery (expected lifespan of 10 years)
- Any SAV file of the game is automatically loaded into SDRAM
- Game Boy stops running upon pressing ESC and game data is saved on the PC

Cartridge - Memory Bank Controllers

- MBC1 and MBC5 are the most common

Serial - I/O Registers

Name	Address	Bit	7	6	5	4	3	2	1	0		
SB	FF01										RMN	Serial Transfer Data (8-bit Shift Register)
			7	6	5	4	3	2	1	0		
SC	FF02										RMN\qquad	Serial Transfer Control Register
			\square									SCK terminal IIO selection 0: Use external clock 1: Use internal clock
											Internal Shift Clock Switching Flag (CGB only) $0:$ Select $8 \mathrm{KHz}(16 \mathrm{KHz})$ 1: $256 \mathrm{KHz}(512 \mathrm{KHz})$ * Frequencies in () are in doublespeed mode	
											- Serial Transfer start flag 0 : No serial transter 1: Start serial transfer (Holds 1 untill transfer completes, then automatically sets to 0 .)	

Nintendo. Game Boy Programming Manual

Serial - Timing

- Sending and receiving data (8-bits) occur simultaneously

Nintendo. Game Boy Programming Manual

Accuracy Tests

- Mooneye GB (https://github.com/Gekkio/mooneye-gb) and Blargg's (http://gbdev.gg8.se/files/roms/blargg-gb-tests/) test ROMs are developed from running them with real Game Boy devices
- Our results compared to others:

Demo

- oh.gb (ROM+MBC1)
- pocket.gb (ROM+MBC1)
- Kirby's Dream Land (ROM+MBC1)
- Pokemon Yellow (ROM+MBC5+RAM+BATTERY)
- Tetris (ROM only)

