
StrEEt Fight Project Design

CSEE4840 Embedded Systems

Alan Armero Cansu Cabuk Daniel Mesko
aa3938 cc4455 dpm2153

March 29, 2019

1 Introduction

We propose a 2D, 2-player street fighting game, where players interact with the
game via USB gamepads and a VGA monitor. The gamepad has a joystick
and two buttons. The joystick controls the movement of the player: moving
the joystick left or right moves the player left or right, moving the joystick up
makes the player jump, and moving the joystick down makes the player duck.
The two buttons control punches and kicks, respectively. On the VGA monitor
we will display a background terrain, three hearts above each player, and two
sprites representing the players. When a player punches, kicks, or takes a hit,
an appropriate sprite is displayed. All other times, an idle sprite is displayed.
The players will be on opposite sides of the screen, facing one another, with
their respective health hearts above their corners. When one player hits the
other, the other player incurs damage and loses a heart. When one player loses
all of their hearts, the other player wins. When a player is hit or a player dies,
an appropriate sound is emitted.

1



2 System Architecture

Logic Module

VGA Device Driver Audio Device DriverUSB Gamepad Device Driver

Avalon Bus

VGA/Sprite Controller Audio ControllerUSB Gamepad Controller

VGA Display Audio Line OutUSB Gamepad

Software Components

Hardware Components

2



2.1 Software Components

The game logic and device drivers will be written in C.

2.1.1 Logic Module

The game logic is controlled by a logic module at the highest level. The body of
this module will begin by forking two new threads. Each of these two threads
will then enter an infinite loop that waits for input from one of the two USB
gamepads, controlled by one of the two players. The main thread will also enter
an infinite loop where it continuously checks the two players’ states and calls
appropriate device drivers to represent those states. State information is stored
globally all three threads. Player state includes player position, health, and
current behavior (idle, ducking, punching, etc.) On input from the gamepad,
the two worker threads update player state accordingly. The main thread will
then read state changes of the two players, update game state information if
necessary, and forward relevant information to the device drivers. This infor-
mation includes x and y coordinates of the players and the sprites that represent
their current states, to be sent to the the VGA driver, and the ”pow”/”death”
sounds, to be sent to the audio driver. In some cases, additional sprites are sent
to the VGA driver. For example, when a player lands a punch/kick (the player
punches/kicks while adjacent to the opponent), a ”pow” sprite is sent to the
VGA device driver.

When a player’s health reaches zero, the main thread indicates to the VGA
device driver to display the ”dead player” sprite for that player, and indicates
to the audio device driver to emit the ”death” sound. It then exits the infinite
loop and terminates the game.

2.1.2 VGA Device Driver

The VGA device driver receives sprite information from the logic module and
outputs appropriate information to the VGA hardware controller. Specifically
it receives sprite number and x and y coordinates from the logic module and
forwards them to the VGA hardware controller for all of the sprites being rep-
resented in a particular frame. After it receives all of the sprites for a frame,
it makes a ”render” call to the VGA hardware controller, which will render
the corresponding frame. The device driver, as with all of the drivers, exposes
ioctl system calls to the logic module and uses memory mapped device reg-
isters internally to communicate with the hardware controller. For the VGA
driver, the device registers will be used to send x and y coordinates and sprite
number to the hardware controller.

2.1.3 USB Gamepad Device Driver

The USB gamepad device driver will receive information (via memory-mapped
device registers) from the USB hardware controller indicating what kind of

3



action was performed: joystick up, joystick down, joystick left, joystick right,
button one pressed, button two pressed. It will then decode this information
into a corresponding magic number which it will forward to the logic module.
The logic module worker threads will receive this information when they call a
function to wait for gamepad input, at the beginning of the infinite loop.

2.1.4 Audio Device Driver

The audio device driver will receive a magic number from the logic module in-
dicating which of the two sounds to emit. It will then forward that number
(by placing it in a memory-mapped device register) to the audio hardware con-
troller, which will fetch the appropriate synthesized sound from SDRAM and put
it out on the audio line out.

2.2 Hardware Components

The device controllers will be written in SystemVerilog.

2.2.1 VGA/Sprite Controller

The VGA/Sprite controller receives from the VGA device driver an x and y po-
sition for a given sprite and adds it to a global queue for that frame. It continues
to receive sprite information from the VGA device driver until a ”render” bit
is set. At that point, it renders the frame pixel by pixel, traversing the sprite
queue to determine if any of the sprites need to be rendered at that pixel. If
this is the case, the controller pulls the appropriate sprite image (RBG values
for all pixels) from DDR3 memory and displays the appropriate pixel within that
sprite. If there is no sprite to display, the appropriate background tile for that
pixel is fetched from DDR3 memory and displayed. After a frame is displayed,
the sprite queue is cleared.

2.2.2 Audio Controller

The audio controller will receive a magic number from the device driver indi-
cating which of the two sounds (”pow” or ”die”) to emit. When it receives a
number, it will fetch the appropriate synthesized sound from SDRAM and put it
out on the audio line out on the DE1-SoC. It will do so by interacting with the
I2C Multiplexer on the DE1-SoC.

2.2.3 USB Gamepad Controller

The USB gamepad controller receives USB keycodes from the gamepad and
forwards them to the USB gamepad device driver. We will use the controller in-
cluded with the Gamelec 2-Player Arcade Buttons and Joystick DIY Controller
Kit (available at https://www.amazon.com/Gamelec-2-Player-Controller-Raspberry-Joysticks/

4

https://www.amazon.com/Gamelec-2-Player-Controller-Raspberry-Joysticks/dp/B077FRWMKF
https://www.amazon.com/Gamelec-2-Player-Controller-Raspberry-Joysticks/dp/B077FRWMKF


dp/B077FRWMKF).

3 Sprites/Background Tiles

To save memory, we will use the same sprites for both players, but mirror the
images, so that the two players are facing one another. The ioctl calls made
to the VGA device driver by the logic module will contain an extra bit that
indicates whether the given sprite is for player 1 or for player 2. The VGA driver
will pass the extra bit along to the hardware controller, which will mirror the
sprite it pulls from memory, if necessary. The full list of sprites and background
tiles is shown below.

1. Idle Sprite

2. Duck Sprite

3. Punch Sprite

4. Kick Sprite

5. Walk Sprite

6. Float Sprite

7. Dead Sprite

8. ”pow/spark” Sprite

9. Arrow Sprite

10. Health Heart Sprite

11. Floor Tile

4 Potential Bottlenecks

4.1 Memory Usage

Since we have many sprites to render per frame and the hardware controller is
responsible for pulling these sprites from memory, we may encounter an issue
where the monitor refreshes before we can render the entire frame.

4.2 Computation Speed

The logic module performs many non-trivial computations to update game and
player state before calling the VGA device driver, so it is possible that this will
slow down the frame rate and make the game glitchy.

5

https://www.amazon.com/Gamelec-2-Player-Controller-Raspberry-Joysticks/dp/B077FRWMKF
https://www.amazon.com/Gamelec-2-Player-Controller-Raspberry-Joysticks/dp/B077FRWMKF


5 Project Plan

5.1 Milestone 1

By April 5th we aim to have the VGA/Sprite controller and the VGA device
driver complete. To test these components without the logic module and USB
gamepad support, we intend to hardcode a few ioctl calls that test the capa-
bility of the VGA driver/controller to display the various sprites and alter their
locations.

5.2 Milestone 2

By April 19th we aim to have the Audio and USB gamepad device drivers and
controllers complete. At this point we should be able to interpret input from
the USB gamepads and alter the locations of the sprites accordingly, as well as
output our two sounds properly.

5.3 Milestone 3

By May 3rd we aim to have the logic module complete and have nearly com-
pleted debugging and testing the game. At this point players and their sprites
should respond properly to the various forms of gamepad input. Health heart
sprites should disappear when a player takes a hit, and the game should termi-
nate when a player loses all hearts. Sounds should be emitted at the appropriate
times.

6


	Introduction
	System Architecture
	Software Components
	Logic Module
	VGA Device Driver
	USB Gamepad Device Driver
	Audio Device Driver

	Hardware Components
	VGA/Sprite Controller
	Audio Controller
	USB Gamepad Controller


	Sprites/Background Tiles
	Potential Bottlenecks
	Memory Usage
	Computation Speed

	Project Plan
	Milestone 1
	Milestone 2
	Milestone 3


