
GaE
Graphs Ain’t Easy

Andrew Jones (adj2129)
Kevin Zeng (ksz2109)
Samara Nebel (srn2134)

Introduction

Graphs

● Complex data structure
● Ubiquitous and fundamental

Goal:

● We want to provide the end user a
streamlined interface to easily
write programs that read and
parse graphs.

Architecture

Scanner

Input: source program

Output: tokens

Parser

Input: tokens

Output: ast

Semant

Input: ast

Output: sast

Linker

Input: LLVM IR and C
Library

Output: executable

Codegen

Input: sast

Output: LLVM IR

Data Types

int 32-bit signed integer

double 32-bit floating point number

bool Boolean - 0 == false, 1 == true

char ASCII character

string An array of ASCII characters

array A list that can store elements of a single type

map<k,v> Variable-size mapping that associates key of type k to value of type v

graph<n,e> Weighted and directed graph with nodes of type n and edge weights of type e

edge<n, w> A three-tuple consisting of source node, destination node, and edge weight where n
is the node type and w is the edge weight type

struct A group of data elements grouped together under one name as a type definition

Base types

Container
types

Keywords

func int double
bool char string
map graph edge
struct in if
else for while
return true false

Operators

+, -, *, /, %, ++, -- Integer operators (add, subtract, multiply, divide, mod, increment, decrement)

+. , -. , *. , /. , %. Double operators (add, subtract, multiply, divide, mod)

||, &&, ! Boolean logic operators (or, and, not)

<, >, <=, >=, ==, != Relational and equality operators (less than, greater than, less than/equal, greater
than/equal, equal, not equal)

:=, = Assignment operators

+ String operator (concatenation)

[] Array and map operator (index)

in Array, map, and graph operator (in)

Variable Declaration and Instantiation

Variables must be declared before they are instantiated

int x;
x := 0;
x = 5;

NOTE: formally, := is the assignment operator and = is
the re-assign operator, but in practice using either
operator will exhibit the same outcomes.

Container types (array, map, and graph) must be
instantiated with either a literal or their respective
_init() function

int arr1[];
int arr2[];
arr1 := [1, 2, 3];
arr2 := arr_init();
append(arr2, 1);

Control Flow (if, for, while)

If:

int x;
x := 5;
if x == 6 {

printi(1);
}
else {

printi(2);
}

/* this will print 2 */

For:

int i;
for i := 0; i < 10; i++ {

printi(i);
}

/* this will print 0-9 */

While:

int x;
x := 0;
while (x != 10) {

printi(x);
x++;

}

/* this will print 0-9 */

Functions

A function declaration has the form:
func func_name(parameter-list) return-type

Parameter list: A series of variable types separated by commas
(can be empty)

Return type must be specified.

Inside the function:
● Variables must be declared at the beginning
● There must be a return statement at the end which returns

the corresponding return type

Every program must have a main function:
func main() int {}

Example:

func average_of_two(int x, int y) int {

int tmp;

tmp := (x + y) / 2;

return tmp;

}

Arrays and Maps

Arrays:

string[] arr;

arr := [“hello”, “world”]

Types:

● Primitives: int, double, string, char, bool
● Structs
● Edges

Maps:

map<string, int> my_map;

my_map := [“zero”: 0, “one”: 1];

Key Types:

● string, int, char, struct

Value Types:

● Primitives

Array and Map Built-in Functions

Arrays:

● lena(arr) Returns length of the array.
● arr[index] Returns element from the array.
● arr[index] = value Utilizes the index

operator to change the value stored at the index to
the new value.

● append(arr, value) Appends the value to
the end of the array.

● arr_init() Initializes an empty array.
● el in arr Returns boolean for whether arr

contains el

Maps:

● lenm(my_map) Returns length of the map.
● my_map[key] Returns value corresponding to

the stored key-value pair.
● my_map[key] = value Utilizes the index

operator to change the value corresponding to the
key. If the key does not exist, this will add a new
key-value pair to the map.

● map_init() Initializes an empty map.
● getKeys(my_map) Returns an array of the

keys from the map.
● key in my_map Returns boolean for

whether key is a key in my_map

Structs

Declared at the beginning of the program in the global
scope. Example:

struct My_struct {

value: int,

name: string

}

Struct attributes may only be base types, i.e. char, bool,
int, double, and string.

Variables of this struct type can then be assigned as
follows:

My_struct var;

var:= { value: 1, name: “hello” };

Individual fields can be accessed as well:

prints(var.name);

/* this will print “hello” */

Edges

Edge: a three-tuple of structs, i.e. (src, dst, val)

Edge is a generic type:
● First type parameter is node type
● Second type parameter is edge value type
● Both types MUST be a struct type

Each Edge represents one directed edge between the two
specified nodes with the specified edge value.

struct Node {
name: string

}
struct Value {

value: int
}
…
edge<Node, Value> e;
e := (

{name: “src”},
{name: “dst”},
{value: 10}

);

Graphs

Graph: a collection of edges

Graph is a generic type, with type parameter definitions
and restrictions the same as Edge.

Nodes are uniquely identified based on struct equality,
i.e. node1 and node2 refer to the same node iff all their
attributes are the same.

At most one edge can exist in a graph with the same
source and destination node.

struct Int {
value: int

}
…
graph<Int, Int> g;
g := {
 ({value: 1}, {value: 2}, {value: 10}),
 ({value: 1}, {value: 3}, {value: 5}),
 ({value: 1}, {value: 4}, {value: 12}),
 ({value: 2}, {value: 3}, {value: 8}),
};

Graph And Edge Built-in Functions

Graphs:

● graph_init()
○ Initializes an empty graph. Edges can then be

added to the graph using the addEdge()
function.

● getNodes(graph)
○ Returns an array of node structs.

● getEdges(graph)
○ Returns an array of edges.

● addEdge(graph, new_edge)
○ Adds edge new_edge to the graph.

● n in graph
○ Returns boolean for whether n is a node inside

graph

Edges:

● getSrc(edge)
○ Returns source node struct.

● getDst(edge)
○ Returns destination node struct.

● getVal(edge)
○ Returns edge value struct.

● setSrc(edge, node_struct)
○ Sets the source node of edge to node_struct.

● setDst(edge, node_struct)
○ Sets the destination node of edge to

node_struct.
● setVal(edge, node_struct)

○ Sets the edge value of edge to node_struct.

Demo

Thank you!

