
SCoLang : Small Contract Language

vv2282 - Varun Varahabhotla
jc4697 - Jackson Chen
sa3433 - Sambhav Anand
sr3355 - Sushanth Raman
kv2295 - Kanishk Vashisht

Introduction
A language made with the premise that everything is a contract waiting to execute. Each contract
has defined listeners, including listeners which listen for other contracts recursively. When all
listeners are satisfied, a set of contract conditions get executed.

Purpose
We live in a world full of routine tasks. Every day, millions of people take repeated actions
based on guaranteed stimuli - all the way from turning on the lights when they wake up to
making git commits after a function is declared. The scope of these actions is broad, and we
envision a general purpose language that can make a dent in this scope. Which is why we’re
writing a language that works by listening and reacting inspired by blockchain smart contracts.
This is the language that will be usable for anything from simple load balancing to complex IOT
applications.

Use Cases

1) Notifying users about certain events (e.g. weather drops below 40 degrees)
2) Distributed system management
3) Recurring tasks (e.g every time it hits 7am turn off Nightshift).
4) Cycle numeric operations (eg. GCD)
5) Triggering events based on physical sensors (e.g. if multiple burglar alarms go off, we

can trigger multiple events accordingly)

Code Syntax
Data Types
Primitives

long, float, char Regular primitive types (char: ‘’)

Array An aggregate data type; [] Python style
(slicing, referencing, etc)

bool Ternary data type: true, false, null

null A data type that represents nothing

String A text value. Can be a single char or an
arbitrary number of chars concatenated
together.

Operators
== != Equality and inequality operators. Does a

deep comparison to ensure objects contain the
same value and are from the same memory
location.

() Parentheses helps indicate operator
precedence.

> < >= <= Greater than and less than operators.

&& || Represents logical AND and logical OR
respectively.

. Lets you access elements underneath
composite data types.

-> Binds listeners to actions to create a contract.
Can bind multiple listeners and multiple
actions at once.

savage Combine different operators using boolean
arithmetic (x AND b)

exit An operator to kill a listener; indicates to
memory to conduct garbage collection

resolve An operator within a listener that completes
the listener logic and sets its value to be 1 in
the event loop

% Modulus operator

print Outputs to standard out

input Reads and stores from standard in

webhook Initiates a connection to a specified endpoint
(the port is automatically opened on the
program’s end). Returns a boolean (default 0,
set to 1 for a tick if the endpoint is requested).

Reserved Keywords

if if statement as in other standard languages

Contract Binds listeners to actions and then triggers
actions if conditions for listeners are satisfied.

Listener Checks to see if certain conditions are met.
(e.g. memory usage exceeds a certain amount)

Action A specified event that is meant to triggered by
a contract if the conditions for the listener are
meant. (E.g. turn lights on)

/* */ Indicates a multi or single line comment

print Prints out String or native object types

Code Example
GCD:
long a = 10; /*or input*/
long b = 4;
long t;

Listener keep_going = { if(b != 0){ resolve(); } };
Listener found = {if(a==b){ resolve(); }};

Action subtract = {

if(a > b) {
t = b;

b = a % b;

a = b;

 }

};

Action display = {
print(a);

};

keep_going -> subtract;

found->display;

Hello World:
bool helloHook = webhook('/hello');

Listener hello = {

if (helloHook) {
 resolve();

 }

}

Action print_hello = {

print("Hello World"!);
}

hello -> print_hello;

