

 ProCSV

Team Members:

Tabara Nosiba (tn2341), Project Manager, Tester
Tahiya Chowdhury (tc2672), Language Guru, Tester
Tahsina Saosun (ts2931), System Architect, Tester

Introduction

The ProCSV language solves issues pertaining to the manipulation of one or more
CSV files. People who regularly analyze, manipulate, and compare data across
multiple CSV files for data collection purposes may find it tedious and inefficient
in most programming languages. ProCSV will provide users with built-in functions
that will make tasks such as cleaning data, comparing, parsing, and visualizing data
stored within multiple CSV files. Anyone working with large CSV files will find
this language helpful.

Overview
Our language is meant to streamline the parsing through CSV files. Since many
institutions’ data analysis process requires work to parse and visualize insights
from traditionally formatted data collection formats, such as CSV. Simplifying this
process would improve developers’ productivity significantly and would also save
companies millions of dollars in the process.

Data Types

Integers int x = 5;

Float float x = 5.0;

String string s = “hello world”;

Boolean boolean checkUnique = true;

Array int [] a = array([3, 4, 5, 6]);

Objects

csv Object that includes data parsed from
the CSV file stored in an internal

hashmap

hashmap Key-pair values

table An object with formatted columns and
rows containing the parsed data. Will
be implemented using DOM
manipulation

Data Operators

+ Concatenation (String), Addition(int and float)

== Equal to (String, int, and float)

/ Division (int and float)

* Multiplication (int and float)

= Equals (int and float)

>, <, <=, >= Greater than, less than, greater than equal to, less
than equal to (int and float)

[] Index (Array)

|| Logical OR

&& Logical AND

! Logical NOT

% Module (int and float)

++ Increment by 1 (int and float)

-- Decrement by 1 (int and float)

+= Assignment and increment (int and float)

Control Flow

if / else if / else Conditional statements

for Conditional for loop statement

While Conditional while loop statement

Single line comment

/* … */ Multi line comment

; End of statement indicator

Built-in Functions

read_csv() Reads in a CSV file

parse() Parses data from the CSV file based on
the specified delimiter

print() Prints all data types

tablify() Formats the data the user wants to put
into a table format

showTable() Displays table containing data into a
DOM doc

merge() Merges two different CSV files into
one

find() Looks for and returns a specific piece
of data based on the argument

sim() Compares data inside two different
CSV files and returns a csv data type of
common data

Sample Programs:

/*
Takes in two csv files as arguments and returns common data
*/

csv findSimilarData(csv c1, csv c2){

csv similarData = sim(c1, c1);
return similarData;

}

//Calling the function inside the main method
funct main(String[] args){

csv input_csv1 = read(‘sample1.csv’);
csv input_csv2 = read(‘sample2.csv’);

csv result_csv = findSimilarData(input_csv1, input_csv2);

}

/*
Takes in two csv files as arguments, merges them into one csv file, and displays
data in a table
*/

table createTable(csv c1, csv c2){

csv merged_csv = merge(c1, c2);
table dataSet = tablify(merged_csv);

}

//Calling the function inside the main method
funct main(String[] args){

csv input_csv1 = read(‘sample1.csv’);
csv input_csv2 = read(‘sample2.csv’);

table result_table = createTable(input_csv1, input_csv2);

}

