
Language Proposal: “MMM”

Shenghao Jiang(sj2914)
Shikun Wang(sw3309)
Yixiong Ren (yr2344)

Role Responsibilities
Manager Timely (completion of deliverables) Shenghao Jiang
Language Guru (Language design) Yixiong Ren
System Architect (Compiler architecture, development environment) Shikun Wang
Tester (Test plan test suites) Shikun Wang

1.Description & Application of the Language
“MMM” is a Matlab style matrix manipulation language that can be used to calculate matrix
operations efficiently. Users are able to do matrix operations through both in-built and
self-defined functions. Same operations can be applied to user defined struct to make code
more concise and more efficient. Due to our implementation and optimization of basic matrix
operations in Ocaml, the basic matrix operations will be fast. The application of this
programming language ranges from image cropping, rotating, denoising, enhancement, edge
detection, and color filtering. Users are able to define the struct and functions to process image
more efficiently.

2.Programs included
Within “MMM”, basic operators (such as +, -, *, /, …) need to be implemented to finish
operations among integer, float and matrix. Besides, a built-in library should be established to
calculate the properties of matrix such as determinant, eigenvalues, inverse, etc. For image
processing additional functions need to be implemented to read images from files and save the
post-processing images. A print() function is built as well to output results.

3. Parts
3.1 Primitive Types
int integer type
e.g.
int x = ​1​;
float float type
e.g.
float x = ​9.012​;
matrix matrix stores float type data
e.g.

matrix y = matrix(row,col); // default to be all zero

matrix y = [​2​,​2​;​2​,​3​];

string quoted by “ ” and only used for image I/O & printing results

3.2 Lexical conventions
comments e.g.

// inline comments
/* multiple lines comments
*/

The language uses ; to separate each token of source code.
User must declare variable type before its name.
White space is required between the data type and the variable name, but it cannot appear in a
variable identifiers or keywords.

3.3 Basic operators
+ addition
++ increase the integer by 1
- subtraction
-- decrease the integer by 1
* multiplication
/ division
== equivalence
!= non-equivalence
< less-than
> greater-than
<= less-than-or-equal-to
>= greater-than-or-equal-to
= assignment

3.4 Matrix Operator
+ matrix addition
- matrix subtraction
* matrix multiplication
.* element-wise matrix multiplication
./ element-wise matrix division

height(matrix): number of rows in the matrix as an integer
width(matrix): number of columns in the matrix as an integer
sum(matrix): sum of all the elements in the matrix
mean(matrix): average of all the elements in the matrix
trans(matrix): transpose matrix
eig(matrix): eigenvalues of matrix
inv(matrix): inverse of matrix

det(matrix): determinant of matrix
conv() convolution
conv(kernel, matrix) // convolve matrix with kernel

Slicing matrix e.g.

matrix M = [​2​,​3​,​4​,​5​;​1​,​2​,​3​,​4​;​6​,​7​,​8​,​9​];
M[row][col]

M[​2​][​3​] //​9
M[​2​][:] //[​6​,​7​,​8​,​9​]
M[:][​2​] //[​4​;​3​;​8​]
M[​1​:​2​][​2​] //[​3​;​8​]

3.5 Standard functions
declaration:

func name(arg1, arg2, ...) {

}

call:

name(arg1, arg2, ...);

3.6 Program structures
If Else Statements
While statement
For statement

3.7 Struct
declaration:

struct name {

 type element1;

 type element2;

 ...

}

initialization:

name object = name(arg1, arg2, ...);

call:
object.element

3.8 Image I/O

To conduct image processing, a built-in struct called Image is defined as follow:
struct Image{

 matrix R; // red channel

 matrix G; // green channel

 matrix B; // blue channel

 matrix BW; // white and black channel

}

Image I/O functions include:

Image img = imread("filepath"); // load image from file as a Image object

save(img, "filepath"); //save a Image object as a .jpg file

4. Sample Program
The sample image is a black and white image, and the purpose of this program is to denoise the
image by assigning the kernel to calculate the mean of the neighbors of every pixel.

/*Image is a declared struct */

func noiseDeduction(Image sampleImage, int numOfIterations){

 matrix copyImage = sampleImage.BW;

 height = height(copyImage);

 width = width(copyImage);

 matrix kernel = [​1.0​, ​1.0​, ​1.0​; ​1.0​, ​1.0​, ​1.0​; ​1.0​, ​1.0​, ​1.0​];
 for(int i=​0​;i<numOfIterations;i++){
 for (int r=​1​;r<height​-1​;r++){
 for (int c=​1​;c<width​-1​;c++){
 matrix neighbor = copyImage[r​-1​:r+​1​][c​-1​:c+​1​];
 neighbor = neighbor .* kernel;

 float averageNeighbor = mean(neighbor);

 copyImage[r][c] = averageNeighbor;

 }

 }

 sampleImage.BW = copyImage;

 }

 ​return​ sampleImage;
}

