
File Input Reinterpretation Engine

Language Guru Christopher Thomas cpt2132
System Architect Jason Konikow jk4057
System Architect Frank Spano fas2154
Tester Ayer Chan oc2237
Manager Graham Patterson gpp2109

Introduction
Motivation
Features
Documentation
Code Example

FIRE is a statically typed programming language designed for implementing algorithms which extract, mutate,
process, and report text and structured data. FIRE is meant to be used in conjunction with large sets of
structured and delimited data, like CSV's. At the core of the language is the motivation to intuitively iterate over,
manipulate, and map functions to large sets of structured data.

Many programmers who use UNIX-based, command-line interfaces prefer to do their text manipulation with an
array of UNIX tools. Stringing together inputs and outputs with syntactically complex statements is
cumbersome and confusing. Our language aspires to streamline and simplify text manipulation tasks by
making files first-class citizens. FIRE is a scripting language, inspired by AWK and other languages.

Additionally, the most common way for professional teams to share data between each other is with a CSV file.

FIRE

Team Members

Table of Contents

Introduction

Motivation

https://github.com/lord-left
https://github.com/jkon1513
https://github.com/fspano118
https://github.com/ochan4
https://github.com/pattersongp
file:///Users/ChrisDev/Dropbox%20(Personal)/CS/PLT/plt-f18/project/proposal.md#introduction
file:///Users/ChrisDev/Dropbox%20(Personal)/CS/PLT/plt-f18/project/proposal.md#motivation
file:///Users/ChrisDev/Dropbox%20(Personal)/CS/PLT/plt-f18/project/proposal.md#features
file:///Users/ChrisDev/Dropbox%20(Personal)/CS/PLT/plt-f18/project/proposal.md#documentation
file:///Users/ChrisDev/Dropbox%20(Personal)/CS/PLT/plt-f18/project/proposal.md#codeexample

If a team receives some data and they want to quickly manipulate that data, how can they avoid the overhead
of importing it into a relational database, then querying that database for the desired manipulation? FIRE allows
for such a manipulation.

int - Integer
float - A floating point number
string - A sequence of characters
file - Native file type for easily operating on files
func - Function type, are first class citizens
array - An associative array

all data types
all control statements - {if, while, for}

in - syntactic sugar to iterate over every element in array or every line in file stream :
for (x in numbers)

print - used to print data to stdout

return - used to return value from func

map - array operator keyword
stream - file type operator keyword
extract - file type operator keyword
stdin - standard input
stdout - standard output
stderr - standard error

Features

Primitive Data Types:

Reserved Keywords:

Statements are delimited by ; and scope is bounded by {...} .

FIRE supports regular expressions for finding, replacing, and manipulating text. For example, if you're
interested in accessing elements of an array whose indices take a particular form you can use a regular
expression : col = arr[r'[a-zA-Z]'] . This would return an array of alphabetical characters in an
existing array.

FIRE supports the use of associative arrays, similar to the awk implementation. The major difference between
associative arrays and indexed arrays is that in an associative array the indices are converted to strings under
the hood allowing for any valid string (including numbers) to be used as an index. Additionally, arrays are not
stored in any particular order. The order in which elements are produced in an expression
for (element in array) is undefined.

The associative array allows FIRE to pair information in a way that “associates” the key to a value so that the
array is more flexible and intuitive than traditional indexing. You can simulate indexed arrays in FIRE by simply
using sequential numbers as your indices, but the keys are being stringified which means its possible to have
numbers such as -1 or 2.55 as indices.

Arrays are declared using the array <variable name> keyword and do not require an initial size.

Example:

array arr;
arr["fireIsCool"] = 1;
arr[-987] = "two";
arr[66.876] = 3;

for (e in arr) {
 print e;
}

Documentation

Syntax

Regular Expressions

Arrays

Operator Purpose Example

= assignment x=6

+, -, *, / basic arithmetic operators x = a {+, -, *, /} b

==, >, >=, <, <=, != comparison operators if (x == y) ...

++, --
{post, pre}fix increment and
decrement

x++; ++x x--; --x

=> anonymous function (param) => { body }

=== matches data to regex if (String y === [a-zA-Z]*)

Operator Purpose Example

\|\| logical or if (x\|\|y)

&& logical and if (x&&y)

! logical not if (!x)

Operator Purpose Example

[::] slicing operators on arrays x = arr[3:5:];

del <arr>[<item>]
delete operator on an item in
an array

del arr[3];

map <arr>(<func>)
the passed func is called on
each element in the array

map numbers(doubleFunction);

Basic Operators

Logical Operators

Array Operators

Operator Purpose Example

stream
returns an array of the file delimited
by \n

f = file("roster.csv"); f.stream();

extract
returns an array of all matching
fields in the file

array x = file.extract("/w{5}");

FIRE provides the following set of control flow operators: if , while , and for .

Comments are represented with two forward slashes, e.g:

// This is a comment!

File operators

Control Flows

Comments

user:~ $ cat PhoneNumbers.txt
Dennis 201-445-9372
Kenneth 954-667-8990
Richie 312-421-0098
Thomas 201-750-0911
Albert 783-444-7862

user:~ $ cat nj_numbers.fire
//
// Program that determines if a number if from NJ based on 201 area code
//

func isNJ = (String phoneNumber) => {
 return phoneNumber === "201-/d{3}-/d{4}";
};

func extractRegion(func isRegion, file numbers) {

 array resultingNums;
 for(number in numbers.stream()) {
 if(isRegion(number)){
 resultingNums[number] = number;
 }
 }
 return resultingNums;
}

file in = file(stdin);
print extractRegion(isNJ, in);

user:~ $ cut -d' ' -f2 | fire nj_numbers.fire
201-445-9372
201-750-0911

Code Example

