

Casper
Project Proposal

Michael Makris

UNI: mm3443

COMS W4115 (CVN)

September 28, 2018

1

It is my intention to develop a rather limited in scope general-purpose imperative language, Casper, that
resembles the C language, but with more emphasis on the high level than the traditional C low level
capabilities. For example, I plan to include a String data type and library functions to manipulate strings. Also,
if time permits, I might include dictionary and object structures in addition to arrays. At the same time, I will
not be delving into memory manipulation or bitwise operations. In this respect, the language should be able to
implement many of the usual algorithms for applications that are programmed in C, Java, and Python.

Language Features
 Data Types
Type Description Declaration syntax
Integer an integer depended on host machine int x = 0;
Floating point a floating point number float x=3.14;
Boolean reserved words true and false bool x = true;
String variable length sequence of characters str x = “abc”; str x = ‘abc’;
Void representing the empty set or no value void x;

Variable Names
Strictly typed. Sequences of uppercase and lowercase letters, numbers and underscores except the reserved
words. Global variables defined outside of any block specified by {} otherwise only visible within residing {}.

Reserved words
int float bool str void true false if else for while do until break return print input
main

Operators
Operator Description Syntax
+ binary arithmetic addition, string concatenation 1 + 2 1.0 + 2.0 ‘a’ + “b”
- binary arithmetic subtraction 1 – 2 1.0 - 2.0
* binary arithmetic multiplication 1 * 2 1.0 * 2.0
/ binary arithmetic float division 1.5 / 2.5
% binary arithmetic modulus 1 % 2
^ binary arithmetic exponentiation 2 ^ 2 2.0 ^ 0.5
> binary relational greater than 1 > 2
>= binary relational greater than or equal 1 >= 2
< binary relational less than 1 < 2
<= binary relational less than or equal 1 <= 2
== binary relational equal 1 == 2
!= binary relational not equal 1 != 2
++ unary increment (pre or post) an integer int i = 0; i++; ++i;
-- unary decrement (pre or post) an integer int i = 0; i--; --i;
= binary assignment of right-hand expression to left-hand side int i = 0; str x = “abc”;
+= binary assignment of the sum of the two sides to the left-hand side int i = 0; i += 1;
&& binary logical AND x && y
|| binary logical OR x || y
! unary logical NOT !x

2

Precedence
As in C, will add later.

Comments
// for single-line comments after
/* for multi-line comments
 inside delimiters */

(I hope to allow nested /**/ if time permits)

Control Flow
White space is ignored
Statements terminated by ;
Expressions defined by () with no ; after
Compound statements/blocks and scope defined by {} with no ; after
Conditional block

if (expression1) {statement1;}
else if (expression2) {statement2;}
else {statement3;}

Loops
 for (optional initiation; optional termination; optional increment) { statement;}

while (test expression) { statement;}

 do { statement;} until (test expression)

with break allowed in statement to exit loop

Functions
Declared as with variables with a type but include a block, optional arguments passed by value within (), and
must return a value of declared type unless void.

int myFun(str x){
 if(x == ‘hello’) {return 1;}

return 0;}
As in C, main () is the special function that executes first.

Arrays
Declared as with variables with a type and include multiple values of that type with count in [n]. Can be
initialized with one value of same type or a comma-delimited list of same type and same count.

int x[5] = 0; int y[5] = [1,2,3,4,5];

I/O
print (variable) to output any variable to standard output
input (variable) to input from standard input to a variable of a certain type

I will try to implement some useful formatting syntax for I/O if time permits.

3

Example programs
GCD

int gcd(int x, int y) {
 if (y == 0) {

return x;
 }

 return gcd(y, x % y);
}

Quicksort
void quicksort (int number[25], int first, int last) {
 int i, j, pivot, temp;

 if(first<last){
 pivot=first;
 i=first;
 j=last;

 while(i<j) {
 while(number[i]<=number[pivot]&&i<last)
 i++;
 while(number[j]>number[pivot])
 j--;
 if(i<j){
 temp=number[i];
 number[i]=number[j];
 number[j]=temp;
 }
 }
 temp=number[pivot];
 number[pivot]=number[j];
 number[j]=temp;
 quicksort(number,first,j-1);
 quicksort(number,j+1,last);
 }
}

int main(){
 int I; int count; int number[25];
 print("How many elements are you going to enter?: ");
 input(count);
 print("Enter " + str(count) + " elements: ");
 for(i=0;i<count;i++) { input(number[i]); }
 quicksort(number, 0, count-1);
 print("Order of Sorted elements: ");
 for(i=0; i<count; i++) { print(number[i]); }
 return 0;
}

	Language Features
	Data Types
	Variable Names
	Reserved words
	Operators
	Precedence
	Comments
	// for single-line comments after
	Control Flow
	Functions
	Arrays
	I/O
	print (variable) to output any variable to standard output
	Example programs

