
BitTwiddlerBitTwiddler

a language for binary data parsers

Project Proposal

Programming Languages and Translators

COMS W4115 – Fall 2018

Bruno Martins – bm2787

Motivation

Parsing binary data is tricky, especially in high level languages. Python, for example,
makes the programmer deal with the cumbersome struct module. The C language makes it
somewhat easier to map individual bytes or fixed-size chunks of bytes into structures, as long
as the programmer takes care of the alignment carefully. Reading in variable-sized items,
however, is more complicated. Parsing self-describing binary data can get ugly fast.

Description

BitTwiddler’s primary goal is to make it easy to describe and read binary-encoded
data in any format and then parse it into a textual format of the programmer's choice. In

order to achieve this goal, BitTwiddler was designed to be a data-centric programming
language. It's main feature is the template: an object with typed fields and embedded code to
build its members.

Features

• Concise and descriptive code that reads almost as documentation on the binary data

being parsed;

• First class functions and types;

• Strong type checking, with reasonable automatic casts;

• All programs read from the standard input and write their results to the standard output,

debug/log/info/error messages are written to the standard error output;

• Automatically reads from standard input into variables with no assigned value;

• Basic integral types with different bit widths;

Comparison with other languages

Consider a game that stores a character’s name and health as follows (read from stdin)
and parsers in three different languages that output a JSON object.

0x06 ‘M’ ‘a’ ‘r’ ‘v’ ‘i’ ‘n’ 0x42 0x00 0x00 0x00

Character’s name Character’s health

Python

from struct import unpack
from sys import stdin

n = unpack('B', stdin.read(1))[0]
name = unpack('%ds' % n, stdin.read(n))[0]
health = unpack('I', stdin.read(4))[0]

print('{"name":”%s”,"health":%d}' %
 (name, health))

// C

#include <stdio.h> // printf
#include <stdint.h> // uintXX_t
#include <stdlib.h> // malloc
#include <unistd.h> // read

int main() {
 uint8_t n;
 read(0, (void*)&n, sizeof(n));
 char *name = (char*)malloc(n+1);
 read(0, (void*)name, n);
 name[n] = 0;
 uint32_t health;
 read(0, (void*)&health, sizeof(health));
 printf(“{\”name\”:\”%s\”,\”health\”:%u}\n”,
 name, health);
 free(name);
 return 0;
}

BitTwiddler

parse { # Reads from stdin automatically.
 n:uint8; # Declaring without assignment: reads from stdin.
 name:uint8[n]; # Array declared in terms of previous fields.
 health:uint32; # Defaults to native byte order.

 emit(‘{‘); # emit writes to stdout.
 emit(‘”name”: “{name}”,’); # Automatic formatting from uint8[] to string.
 emit(‘”health”: {health}’); # And from uint32 to string.
 emit(‘}’);
}

Data Types
Type Description

{u}int8{le,be}
{u}int16{le,be}
{u}int32{le,be}
{u}int64{le,be}

Integer types. Unsigned if prefixed by u, signed otherwise. Can be
suffixed with le (little endian) or be (big endian). If the suffix is not
specified, native endianess is assumed.

float32, float64 Floating point numbers, 32- or 64-bit wide.

bit Single bit.

string Single or several characters. Example: hello: string = "world".

Type A basic type or a template type.

Array<type> Array of elements of type type.

Func<r, a1, a2...> Function that takes arguments of types a1, a2... and returns a
value of type r.

Template Base type for all templates.

None Unit type, analog to the () type in OCaml.

Keywords
Keyword Description

parse The entry point of a program. Must be present exactly once.

template Used to declare templates, akin to dict in Python, but smarter.

_ Means self inside a template, means any in match.

func Declare a function.

return Return early from a function.

if, else Conditional execution.

for, in Iteration over all items of an iterable.

match Pattern matching (similar to Rusts's match operator).

-> match arm.

: Type annotation.

; End of statement.

@ Prevent embedding a field into a template.

{ } Code block delimiter.

Comment.

' " string delimiters.

Operators
Operators Description

+ - / * % Arithmetic plus, minus, divide, multiply, remainder (numbers).

+ Concatenate (strings or arrays).

<< >> | & ~ Bitwise shift left, shift right, or, and and not, respectively.

and or not Boolean and, or and not, respectively.

< <= == >= > Number comparison.

== Equality (string).

= Assignment.

[] Access an element of an array or field of a template.

. Access a template field.

Built-in functions
Function Description

emit: Func<None, string> Writes to stdout.

print: Func<None, string> Writes to stderr.

fatal: Func<None, string> Writes to stderr and ends the program
immediately.

typeof: Func<Type, type> Returns the type of a variable.

len:
 Func<uint64, string>
 Func<uint64, Array<type>>
 Func<uint64, Template>

Returns the length of a variable:
 For strings, the number of characters;
 For arrays, the number of elements;
 For templates, the number of fields;

enumerate:
 Func<Array<Array<uint64, type>>,
Array<type>>

Returns an array of two-element arrays: the
first element is an index into v, the second
element is the value at that index.

map: Func<
 Array<type2>,
 Array<type1>,
 Function<type2, type1>>

Maps elements of an array a of type type to a
function f that accepts one argument of type
type. Returns an array of type type2, which is
f's return type.

join: Func<string, string, Array<string>> Concatenate strings in the second argument
interspersed with the string in the first arg.

Example Program: self-describing binary data

Consider a hypothetical computer game that stores character attributes in self-describing
binary files, and the following content for one of these files encoding a character's name and
experience (numbers are in hexadecimal):

02 00 04 'n' 'a' 'm' 'e' 01 02 'x' 'p' 03 'A' 'n' 'n' 64 00 00 00

Two fields First field
type 0 = string
name = “name”

Second field
type 1 = uint32

name = “xp”

First field
value
"Ann"

Second field
value
100

template AttrString { # Represents an encoded string
@len : uint8; # len will not be a field of AttrString
_ : uint8[len]; # AttrString will be an "alias" to uint8[]

}

template AttrDesc { # Attribute Description
@typeCode : uint8;
type : Type = match typeCode { # If there's no match, the program aborts with an error

0x00 -> AttrString;
0x01 -> uint32;

 };
name : AttrString;

}

template Character(attrs:AttrDesc[]) {
for attr in attrs { # Character's field names will come from strings

attr.name : attr.type; # Auto type conversion: AttrString -> uint8[] -> string
 }
}

parse { # Entry point
numAttrs: uint8; # Reads in the number of attributes

 attrs: AttrDesc[numAttrs]; # Reads in the attribute descriptions
 character: Character(attrs); # Reads character info based on attribute descriptions

 emit('{');
 for [i, attr] in enumerate(character) {

emit('{attr}:');
 match typeof(character.attr) {

AttrString -> emit('"{character.attr}"');
uint32 -> emit('{character.attr}');

}

if i < len(character) - 1 { # len of a template is its number of fields
emit(',');

}
}
emit('}\n');

}

Example Program: gcd

func gcd:uint64 (a:uint64, b:uint64) {
 if b == 0 {
 a; # return keyword is not necessary
 } else {
 gcd(b, a % b);
 }
}

parse {
 a : uint32; # Read inputs from standard input
 b : uint32;

 r = gcd(a, b); # Automatic upcast uint32 -> uint64, automatic type for r (uint64)
 emit('gcd({a}, {b}) = {r}\n');
}

	Motivation
	Description
	Features
	Comparison with other languages
	Data Types
	Keywords
	Operators
	Built-in functions
	Example Program: self-describing binary data
	Example Program: gcd

