

Amit Shravan Patel

UNI: ap3567

COMS W4115 (CVN)

Prof. Stephen Edwards

Project Proposal

AP++

Introduction

The purpose of my project is to create a new language, let's give it the

eponymous name of ​AP++​, that consists of a subset of features and syntactical

sugar of the various languages for which I have developed a predilection;

from Python's intuitive list slicing syntax to the ++ operator and {} scope

blocks in C++. ​AP++ will be much smaller in scope than the gamut of features

offered in these modern programming languages, but will still be significant

enough to be able to implement a number of algorithms.

Language Features

Scope

{} blocks for defining scope

; line termination

Comments

// single-line comments

Conditionals

if (conditional expression1) {

} else if (conditional expression2) {

} else {

}

Variables

Variables will be strictly typed in ​AP++,
e.g.​ ​int​ x = 4; ​bool​ y = true; void foo(​int​ x);

2 basic primitive types: ​Integer, Boolean

Integer​ (keyword ​int)
Declaration:

e.g. ​int x = 1; int x = y; int x = y + 1;

Operators:

Operator Description Examples

+ Arithmetic Addition x + y : between 2 vars
x + 1 : between var and literal
1 + 2 : between 2 literals

- Arithmetic Subtraction x - y : between 2 vars

x - 1 : between var and literal
1 - 2 : between 2 literals

/ Arithmetic Division x / y : between 2 vars
x / 1 : between var and literal
1 / 2 : between 2 literals

* Arithmetic Multiplication x * y : between 2 vars
x * 1 : between var and literal
1 * 2 : between 2 literals

% Modulus x % y: between 2 vars
x % 2: between var and literal
1 % 2: between 2 literals

++x Unary Pre-Increment
Operator

++x

x++ Unary Post-Increment
Operator

x++

Boolean​ (keyword:​ bool, values: {true, false}​)
Declaration:

e.g. bool x = true; bool x = y; bool x = conditional expression;

Operators:

Operator Description Examples

&& Boolean AND x && y

|| Boolean || x || y

! Boolean NOT !x

Variables declared outside of a scoped block {} will be considered global

variables that live on the heap. All other variables will be allocated on the

stack.

Lists

Python-style mutable lists.

Declaration:

e.g. int x[] = []; int x[] = [1, 2, 4]; int x[] = y[:];

Function Description

list.append(x) appends element x to end of list

list.insert(i, x) inserts element x at ith index

list.pop([i]) pops ith element of list of i specified, else from
end

list.clear() clears all elements from list

[:] splicing returns sublists of specified range, e.g.
l[:] - returns new list with all elements from l
l[4:] - returns elements from index 4 to last
l[:4] - returns elements from index 0 to 4 index
inclusive
l[2:4] - returns elements from index 2 to 4
inclusive

Loops

while (conditional expression) {

}

I opted not to implement the for loop since the same functionality can be

achieved with a while loop and local variables.

Functions

with return types

int foo(int a, int b) {

 return 0;

}

no return types:

void foo() {

}

There will be no support for default arguments, variable arguments or

function overloading. Every param and return will pass by value, not

reference.

Example Programs

Euclidean Algorithm (GCD)
int gcd(int x, int y) {

 if (y == 0) {

 return x;

 }

 return gcd(y, x % y);

}

Merge Sort
// merges two sorted sublists of arr[] (arr[0..m], arr[m+1..r]) in-place.

void merge(int[] arr, int l, int m, int r) {

 // temp lists for l and r sides

 int[] L = arr[0:m];

 int[] R = arr[m+1:r];

 // merge the temp lists back into arr[l..r]

 int i = 0; // init index of 1st sublist

 int j = 0; // init index of 2nd sublist

 int k = l; // init index of merged sublist

 while (k < r) {

 if (j >= r || (i < m && L[i] <= R[j])) {

 arr[k] = L[i];

 i++;

 } else if (i >= m || (j < r && L[i] > R[j])) {

 arr[k] = R[j];

 j++;

 }

 k++;

 }

}

void mergeSort(int[] list, l, r) {

 if (l >= r) {

 return;

 }

 int m = (l + (r-1)) / 2;

 mergeSort(list, l, m);

 mergeSort(list, m+1, r);

 merge(list, l, m, r);

}

