
Logic Programming: The Prolog Language

Stephen A. Edwards

Columbia University

Fall 2018

Logic

All Caltech graduates are nerds.

Stephen is a Caltech graduate.

Is Stephen a nerd?

nerd(X) :- techer(X).

techer(stephen).

?- nerd(stephen).
yes

Logic

All Caltech graduates are nerds.

Stephen is a Caltech graduate.

Is Stephen a nerd?

nerd(X) :- techer(X).

techer(stephen).

?- nerd(stephen).
yes

More Logic
witch(X) :- burns(X), female(X).
burns(X) :- wooden(X).
wooden(X) :- floats(X).
floats(X) :- sameweight(duck, X).

female(girl). /* By observation */
sameweight(duck,girl). /* By experiment */

? witch(girl).
yes

Still More Logic

“My Enemy’s Enemy is My Friend.”

friend(X,Z) :-
enemy(X,Y), enemy(Y,Z).

enemy(stephen, ryan).
enemy(ryan, jordan).
enemy(jordan, jacob).

?- friend(stephen,jordan).
yes
?- friend(stephen,X).
X = jordan
?- friend(X, Y).
X = stephen Y = jordan
X = ryan Y = jacob

The Basic Idea of Prolog

Ï AI programs often involve searching for the solution to
a problem.

Ï Why not provide this search capability as the
underlying idea of the language?

Ï Result: Prolog

Prolog

Mostly declarative.

Program looks like a declaration of facts plus rules for
deducing things.

“Running” the program involves answering questions that
refer to the facts or can be deduced from them.

More formally, you provide the axioms, and Prolog tries to
prove theorems.

Prolog Execution

Facts
nerd(X) :- techer(X).
techer(stephen).

↓
Query
?- nerd(stephen).

→Search (Execution)

↓
Result
yes

Simple Searching

Starts with the query:

?- nerd(stephen).

Can we convince ourselves that nerd(stephen) is true given
the facts we have?

techer(stephen).
nerd(X) :- techer(X).

First says techer(stephen) is true. Not helpful.

Second says that we can conclude nerd(X) is true if we can
conclude techer(X) is true. More promising.

Simple Searching

techer(stephen).
nerd(X) :- techer(X).

?- nerd(stephen).

Unifying nerd(stephen) with the head of the second rule,
nerd(X), we conclude that X = stephen.

We’re not done: for the rule to be true, we must find that
all its conditions are true. X = stephen, so we want
techer(stephen) to hold.

This is exactly the first clause in the database; we’re
satisfied. The query is simply true.

More Clever Searching
techer(stephen).
techer(todd).
nerd(X) :- techer(X).

?- nerd(X).

“Tell me about everybody who’s provably a nerd.”

As before, start with query. Rule only interesting thing.

Unifying nerd(X) with nerd(X) is vacuously true, so we need
to establish techer(X).

Unifying techer(X) with techer(stephen) succeeds, setting
X = stephen, but we’re not done yet.

Unifying techer(X) with techer(todd) also succeeds,
setting X = todd, but we’re still not done.

Unifying techer(X) with nerd(X) fails, returning no.

More Clever Searching
$ prolog
GNU Prolog 1.3.0
By Daniel Diaz
Copyright (C) 1999-2007 Daniel Diaz
| ?- [user].
compiling user for byte code...
techer(stephen).
techer(todd).
nerd(X) :- techer(X).
^D
user compiled, 4 lines read - 400 bytes written, 14260 ms

yes
| ?- nerd(X).

X = stephen ? ;

X = todd

yes

| ?-

Order Matters
$ prolog
GNU Prolog 1.3.0
By Daniel Diaz
Copyright (C) 1999-2007 Daniel Diaz
| ?- [user].
compiling user for byte code...
techer(todd).
techer(stephen).
nerd(X) :- techer(X).
^D
user compiled, 4 lines read - 399 bytes written, 14027 ms

yes
| ?- nerd(X).

X = todd ? ;
Todd returned first

X = stephen

yes

| ?-

Searching and Backtracking

... · · ·

· · ·

· · ·

· · ·

· · · · · ·

· · ·

· · ·

· · ·

· · ·

· · ·

The Prolog Environment

Database consists of Horn clauses. (“If a is true and b is true
and ... and y is true then z is true”.)

Each clause consists of terms, which may be constants,
variables, or structures.

Constants: foo my_Const + 1.43

Variables: X Y Everybody My_var

Structures: rainy(rochester)
teaches(edwards, cs4115)

Structures and Functors

A structure consists of a functor followed by an open
parenthesis, a list of comma-separated terms, and a close
parenthesis:

“Functor”

bin_tree(

paren must follow immediately

foo, bin_tree(bar, glarch))

What’s a structure? Whatever you like.

A predicate nerd(stephen)
A relationship teaches(edwards, cs4115)
A data structure bin(+, bin(-, 1, 3), 4)

Unification

Part of the search procedure that matches patterns.

The search attempts to match a goal with a rule in the
database by unifying them.

Recursive rules:

Ï A constant only unifies with itself
Ï Two structures unify if they have the same functor, the

same number of arguments, and the corresponding
arguments unify

Ï A variable unifies with anything but forces an
equivalence

Unification Examples
The = operator checks whether two structures unify:

| ?- a = a.
yes % Constant unifies with itself
| ?- a = b.
no % Mismatched constants
| ?- 5.3 = a.
no % Mismatched constants
| ?- 5.3 = X.
X = 5.3 ? ; % Variables unify
yes
| ?- foo(a,X) = foo(X,b).
no % X=a required, but inconsistent
| ?- foo(a,X) = foo(X,a).
X = a % X=a is consistent
yes
| ?- foo(X,b) = foo(a,Y).
X = a
Y = b % X=a, then b=Y
yes
| ?- foo(X,a,X) = foo(b,a,c).
no % X=b required, but inconsistent

The Searching Algorithm

search(goal g , variables e)
for each clause

in the order they appear

h :- t1, . . . , tn in the database
e = unify(g , h, e)
if successful,

for each term

in the order they appear

t1, . . . , tn ,
e = search(tk , e)

if all successful, return e
return no

Note: This pseudo-code ignores one very important part of
the searching process!

Order Affects Efficiency

edge(a, b). edge(b, c).
edge(c, d). edge(d, e).
edge(b, e). edge(d, f).

path(X, X).

path(X, Y) :-
edge(X, Z), path(Z, Y).

Consider the query
| ?- path(a, a).

path(a,a)

path(a,a)=path(X,X)

X=a

yes

Good programming practice: Put the easily-satisfied clauses
first.

Order Affects Efficiency

edge(a, b). edge(b, c).
edge(c, d). edge(d, e).
edge(b, e). edge(d, f).

path(X, Y) :-
edge(X, Z), path(Z, Y).

path(X, X).

Consider the query
| ?- path(a, a).

Will eventually produce
the right answer, but
will spend much more
time doing so.

path(a,a)

path(a,a)=path(X,Y)

X=a Y=a

edge(a,Z)

edge(a,Z) = edge(a,b)

Z=b

path(b,a)

...

Order Can Cause Infinite Recursion

edge(a, b). edge(b, c).
edge(c, d). edge(d, e).
edge(b, e). edge(d, f).

path(X, Y) :-
path(X, Z), edge(Z, Y).

path(X, X).

Consider the query
| ?- path(a, a).

path(a,a)
Goal

path(a,a)=path(X,Y)
Unify

X=a Y=a
Implies

Subgoal
path(a,Z)

path(a,Z) = path(X,Y)

X=a Y=Z

path(a,Z)

path(a,Z) = path(X,Y)

X=a Y=Z

...

edge(Z,Z)

edge(Z,a)

Bill and Ted in Prolog
super_band(X) :-

on_guitar(X, eddie_van_halen).

on_guitar(X, eddie_van_halen) :-
triumphant_video(X).

triumphant_video(X) :-
decent_instruments(X).

decent_instruments(X) :-
know_how_to_play(X).

know_how_to_play(X) :-
on_guitar(X, eddie_van_halen).

| ?- super_band(wyld_stallyns).

What will Bill and Ted do?
http://www.cs.columbia.edu/~sedwards/classes/2010/w4115-fall/

billnted.mp4

http://www.cs.columbia.edu/~sedwards/classes/2010/w4115-fall/billnted.mp4
http://www.cs.columbia.edu/~sedwards/classes/2010/w4115-fall/billnted.mp4
http://www.cs.columbia.edu/~sedwards/classes/2010/w4115-fall/billnted.mp4

Prolog as an Imperative Language

A declarative statement such as

P if Q and R and S

can also be interpreted
procedurally as

To solve P, solve Q, then R, then S.

This is the problem with the last
path example.

path(X, Y) :-
path(X, Z), edge(Z, Y).

“To solve P, solve P. . . ”

go :- print(hello_),
print(world).

| ?- go.
hello_world
yes

Cuts
Ways to shape the behavior
of the search:

Ï Modify clause and term
order.
Can affect efficiency,
termination.

Ï “Cuts”
Explicitly forbidding
further backtracking.

When the search reaches a
cut (!), it does no more
backtracking.
techer(stephen) :- !.
techer(todd).
nerd(X) :- techer(X).

| ?- nerd(X).

X = stephen

yes

Controlling Search Order

Prolog’s ability to control search order is crude, yet often
critical for both efficiency and termination.

Ï Clause order
Ï Term order
Ï Cuts

Often very difficult to force the search algorithm to do
what you want.

Elegant Solution Often Less Efficient

Natural definition of sorting is inefficient:

sort(L1, L2) :- permute(L1, L2), sorted(L2).
permute([], []).
permute(L, [H|T]) :-

append(P, [H|S], L), append(P, S, W), permute(W, T).

Instead, need to make algorithm more explicit:

qsort([], []).
qsort([A|L1, L2) :- part(A, L1, P1, S1),
qsort(P1, P2), qsort(S1, S2), append(P2, [A|S2], L2).

part(A, [], [], []).
part(A, [H|T], [H|P], S) :- A >= H, part(A, T, P S).
part(A, [H|T], P, [H|S]) :- A < H, part(A, T, P S).

Prolog’s Failings

Interesting experiment, and probably perfectly-suited if
your problem happens to require an AI-style search.

Problem is that if your peg is round, Prolog’s square hole is
difficult to shape.

No known algorithm is sufficiently clever to do smart
searches in all cases.

Devising clever search algorithms is hardly automated:
people get PhDs for it.

