
PARSING
Baishakhi Ray

Fall 2018

Programming Languages & Translators

These slides are motivated from Prof. Alex Aiken: Compilers (Stanford)

Languages and Automata

§ Formal languages are very important in CS
§ Especially in programming languages

§ Regular Languages
§ Weakest formal languages that are widely used
§ Many applications

§ Many Languages are not regular

1

1

0

0

Automata that accepts odd numbers of 1

How many 1s it has accepted?

Automata does not have any memory

- Only solution is duplicate state

Intro to Parsing

§ Regular Languages
§ Weakest formal languages that are widely used
§ Many applications

§ Consider the language {(i)i | i ≥ 0}
§ (), (()), ((()))
§ ((1 + 2) * 3)

§ Nesting structures
§ if .. if.. else.. else..

Regular languages
cannot handle well

Intro to Parsing

§ Input: if(x==y) 1 else 2;

§ Parser Input (Lexical Input):

KEY(IF) ‘(‘ ID(x) OP(‘==‘) ‘)’ INT(1) KEY(ELSE) INT(2) ‘;’

§ Parser Output IF-THEN-ELSE

==

ID ID

=

INT

=

INT

Intro to Parsing

§ Nor every strings of tokens are
valid

§ Parser must distinguish between
valid and invalid token strings.

§ We need
§ A Language: to describe valid
string

§ A method: to distinguish valid
from invalid.

Lexical Analysis

Parser

Semantic Analysis

Code Generation

Character stream

Token stream

Syntax trees

Syntax trees

Context Free Grammar

§ A CFG consists of
§ A set of terminal T
§ A set of non-terminal N
§ A start symbol S (S 𝜖 N)
§ A set of production rules

§ X -> Y1…..YN
§ X 𝜖 N
§ Yi 𝜖 {N, T, 𝜀}

§ Ex: S -> (S) | 𝜀
§ N = {S}
§ T = { (,) , 𝜀}

Context Free Grammar

1. Begin with a string with only the start symbol S

2. Replace a non-terminal X with in the string by the RHS of some production
rule: X->Y1…..Yn

3. Repeat 2 again and again until there are no non-terminals

X1……Xi X Xi+1 …. Xn -> X1……Xi Y1…..Yk Xi+1 …. Xn

For the production rule X -> Y1…..Yk

∝ 0 →	∝ 1 →	 … →	∝ 𝑛	

∝ 0
∗
→	∝ 𝑛		, 𝑛	 ≥ 0

Context Free Grammar

§ Let G be a CFG with start symbol S. Then the language L(G) of G is:

{𝑎1 …… . . 𝑎𝑛|∀𝑖	𝑎𝑖	 ∈ 𝑇	 ∧ 𝑆	
∗
→ 	𝑎1𝑎2 ……𝑎𝑛}

Context Free Grammar

§ There are no rules to replace terminals.

§ Once generated, terminals are permanent

§ Terminals ought to be tokens of programming languages

§ Context-free grammars are a natural notation for this recursive
structure

CFG: Simple Arithmetic expression

E à E + E
| E * E
| (E)
| id

Languages can be generated: id, (id), (id + id) * id,
…

Derivation

§ A derivation is a sequence of production
§ S -> … -> … ->

§ A derivation can be drawn as a tree
§ Start symbol is tree’s root
§ For a production X -> Y1….Yn, add children Y1….Yn to node X

§ Grammar
§ E -> E + E | E * E | (E) | id

§ String
§ id * id + id

§ Derivation

E -> E + E

-> E * E + E

-> id * E + E

-> id * id + E

-> id * id + id

E

E

E

id

* E

id

+ E

id
Parse
Tree

Parse Tree

§ A parse tree has
§ Terminals at the leaves
§ Non-terminals at the interior nodes

§ An in-order traversal of the leaves is the original input

§ The parse tree shows the association of operations, the input string does not

Parse Tree

§ Left-most derivation
§ At each step, replace the left-most
non-terminal

E -> E + E

-> E * E + E

-> id * E + E

-> id * id + E

-> id * id + id

§ Right-most derivation
§ At each step, replace the right-most
non-terminal

E -> E + E

-> E + id

-> E * E + id

-> E * id + id

-> id * id + id

Note that, right-most and left-most derivations have the same parse tree

Ambiguity

§ Grammar
§ E -> E + E | E * E | (E) | id

§ String
§ id * id + id

E

E

E

id

* E

id

+ E

id

E

E

id

* E

E

id

+ E

id

Ambiguity

§ A grammar is ambiguous if it has more than one parse tree for
a string
§ There are more than one right-most or left-most derivation for
some string

§ Ambiguity is bad
§ Leaves meaning for some programs ill-defined

Error Handling

§ Purpose of the compiler is
§ To detect non-valid programs
§ To translate the valid ones

§ Many kinds of possible errors (e.g., in C)

Error Kind Example Detected by
Lexical … $... Lexer
Syntax … x*%... Parser
Semantic … int x; y = x(3);... Type Checker
Correctness your program tester/user

Error Handling

§ Error Handler should
§ Recover errors accurately and quickly
§ Recover from an error quickly
§ Not slow down compilation of valid code

§ Types of Error Handling
§ Panic mode
§ Error productions
§ Automatic local or global correction

Panic Mode Error Handling

§ Panic mode is simplest and most popular method

§ When an error is detected
§ Discard tokens until one with a clear role is found
§ Continue from there

§ Typically looks for “synchronizing” tokens
§ Typically the statement of expression terminators

Panic Mode Error Handling

§ Example:
§ (1 + + 2) + 3

§ Panic-mode recovery:
§ Skip ahead to the next integer and then continue

§ Bison: use the special terminal error to describe how much input to skip
§ E -> int | E + E | (E) | error int | (error)

Normal mode Error mode

Error Productions

§ Specify known common mistakes in the grammar

§ Example:
§ Write 5x instead of 5 * x
§ Add production rule E -> .. | E E

§ Disadvantages
§ complicates the grammar

Error Corrections

§ Idea: find a correct “nearby” program
§ Try token insertions and deletions (goal: minimize edit
distance)

§ Exhaustive search

§ Disadvantages
§ Hard to implement
§ Slows down parsing of correct programs
§ “Nearby” is not necessarily “the intended” program

Error Corrections

§ Past
§ Slow recompilation cycle (even once a day)
§ Find as many errors in once cycle as possible

§ Present
§ Quick recompilation cycle
§ Users tend to correct one error/cycle
§ Complex error recovery is less compelling

Abstract Syntax Trees

§ A parser traces the derivation of a sequence of tokens

§ But the rest of the compiler needs a structural representation of
the program

§ Abstract Syntax Trees
§ Like parse trees but ignore some details
§ Abbreviated as AST

Abstract Syntax Trees

§ Grammar
§ E -> int | (E) | E + E

§ String
§ 5 + (2 + 3)

§After lexical analysis
§ Int<5> ‘+’ ‘(‘ Int<2> ‘+’ Int<3>
‘)’

Abstract Syntax Trees: 5 + (2 + 3)

E

E

Int<5>

+ E

(E

E

Int<2>

+ E

Int<3>

)

Parse Trees

Abstract Syntax Trees: 5 + (2 + 3)

E

E

Int<5>

+ E

(E

E

Int<2>

+ E

Int<3>

)

Parse Trees

• Have too much information
• Parentheses
• Single-successor nodes

Abstract Syntax Trees: 5 + (2 + 3)

E

E

Int<5>

+ E

(E

E

Int<2>

+ E

Int<3>

)

+

Int<5> +

Int<2>

Int<3>

Parse Trees AST

• ASTs capture the nesting structure
• But abstracts from the concrete syntax

• More compact and easier to use

• Have too much information
• Parentheses
• Single-successor nodes

§ AST has many similar forms
§ E.g., for, while, repeat...until
§ E.g., if, ?:, switch

§ Expressions in AST may be complex, nested
§ (x * y) + (z > 5 ? 12 * z : z + 20)

§ Want simpler representation for analysis
§ ...at least, for dataflow analysis

30

Disadvantages of ASTs

