UNI-corn
language reference manual
Gael Zendejas (gz2255) - Manager,
Dan Sendik (drs2176) - Language Guru,
David Lalo (djI2178) - System Architect,

Adiza Awwal (asa2201) - System Architect,
Maryam Aly (mya2114) - Tester

October 15, 2018

Contents

1 Introduction
1.1 Program Structure

2 Data Types

2.1 Wire e
2.1.1 Wire Creation
2.1.2 Wire value definition
2.1.3 Wire assignment
214 Indexing e
2.1.5 Indexing Modules

2.2 Register

3 Lexical Conventions

3.1 Keywords

3.2 Identifiers

3.3 Comments e e
3.3.1 Single-line Comments
3.3.2 Multi-line Comments

3.4 Whitespace

3.5 Operators e
3.5.1 and
3.5.2 0T . .. e e e e e
3.5.3 mor. e e e e
354 mot. ...
3.5.5 mand
3.5.6 XOT o e e e e e e e
3.0.7 XNOT e e

3.6 Relational and Equality Operators

3.7 Punctuation L
3.7.1 Semi-colon

3.7.2 Comma 10

3.73 UNIl-corn Emoji 10

4 Modules 10
4.1 Input. 10
4.2 Output 10
5 Module Automation 10
51 Counted Loops 10
5.2 Generics e e 11
6 Scope 11
7 Standard Library 11
7.1 Built-in Modules oo 11
711 print ..o Lo 12

7.1.2 concatwires 12

8 Sample Code 13
8.1 Combinatorial logic circuit L oL 13
8.2 Sequential logic circuit 13

1 Introduction

UNI-corn is a simple hardware description language. Using the basic building
blocks of combinational logic, UNI-corn can be used to build more complex
digital circuits such as different types of counters, adders, mealy state machines,
etc. As is customary with digital circuits, modules—a collection of one or more
gates with input and output—Ilie at the core of UNI-corn. Furthermore, like
with a digital circuit board, sequence of operations are not determined by the
code’s sequence in a text file but rather by the direction and flow of the circuit’s
wires (either within a module or from module to module).

UNI-corn’s sole data types are the rise (1) and the fall (0) of electricity
flowing through each wire. As discussed further in the the next chapter, these
binary values can be represented and introduced into your program via a couple
of different forms.

As an introduction, below is a simple program that will perform all the basic
logic operations on a pair of wires with constant values. A file need only have
the extension .uni and, because UNI-corn has no classes, every file must have a
main() method (more on this later) wherein the modules can run based on the
system’s clock.

1 // Operators module
2 operators {

3 a=1;

4 b = 0;

5

6 c = a and b;

7 d =b or c;

8 e = not d;

9

10 out e;

11 }

12

13 main() {

14 f = operators;
15 }

=
~N o

1.1 Program Structure

Programs in UNI-corn consist of a main() block and modules. Modules define
circuits that can be arbitrarily recreated within other circuits, given some input.
The main block will simply contain calls upon a module (or set of modules) that
the programmer wants to simulate.

2 Data Types

UNI-corn is peculiar in that it only has one data type, but it also has arbitrarily
many data types, from a different perspective. These are wires.

2.1 Wire

A wire is an array of booleans represented in binary. It is the UNI-corn rep-
resentation of physical wires. A wire’s length acts essentially as a data type;
type-checking happens entirely on a wire-length basis. In this sense there are
arbitrarily many data types (if we consider each wire-length a distinct type).

2.1.1 Wire Creation

There are two main ways of initializing wires: 1) passing a constant and, 2) pass-
ing values from other modules. Once a wire is assigned, it cannot be reassigned.
There is one exception: wires can be reassigned within the main() method. Wire
names must begin with a lowercase English letter character (‘a’-‘z’), and must
contain only alphanumeric English characters (no special symbols like $, #, !,
etc.)

2.1.2 Wire value definition

Wire assignment works as follows:
1 wireA = 0110101

This instantiation and assignment begins with the variable name (here “wireA”)
and the assignment to the wire. The wire size is automatically determined by
the compiler.Note that leading 0’s are factored into the wire’s length.

2.1.3 Wire assignment

Wires can only be the output of other modules, or a constant value; wires cannot
be assigned to other wires. For example, in a module with a single input a and
single output b:

1 x = 1;

2 y = X and X;

3] x =y and a; //error. Can’t reuse names in a module
4 b = y; //error. Can’t "rename" wires

This is different from variable assignment in most imperative languages. At
the level of the compiler, wire assignments are actually creating links between
instances of modules. Conceptually, assignment attaches a wire to a module’s
output. In practice, the wire is continuously receiving output values from a
module.

When a wire is assigned a module’s output, its length is automatically de-
termined by the compiler once the module resolves its own output length. Keep
this in mind when using wires in modules with certain expected values.

2.1.4 Indexing

The square bracket ‘[|’ is used to index a wire whose value is a binary array.
For a n-bit wire (i.e. of length n) the Oth index will be the most significant bit
and the n-1th index will be the least significant bit.

1 a = 01011;
2 b = 10111;
3 al2] //will output O
4 b[0] //will output 1

2.1.5 Indexing Modules

For modules that return multiple outputs, the value assigned to a wire must be
one and only one of those outputs. This output is specified by square brackets
[] enclosing the variable name of the output wire as defined in the module. If

a particular bit in an output wire is desired, double brackets [|[| may be used.
In the case where there is only 1 output, brackets may be omitted.

1 / *%

2 Let this be a module with 2 8-bit inputs, A and B.

3 Let fullAdder have two outputs: an 8-bit wire called val,

4 and a 1-bit wire called carry

5 *%/

6 x = fullAdder(A,B) [carryl//x is of length 1

7 z = fullAdder(A,B) [val]//z is of length 8

8 y = fullAdder(A,B) [val] [0]//y is of length 1.

9 //It is exactly the most significant bit z.

a = and(A[0], B[0])//No brackets needed here

[y
o

2.2 Register

Registers are built-in types comprised of combinational logic. As such their
internal behavior is like modules in that they have input and output wires.
However, since they have persistent memory through each cycle, they need to
be specified separately.

A register is identified by the assignment symbol := which is followed by the
user-defined value or variable name to which the register is assigned. Finally,
they keywords init0 or init1 follow the assignment in order to specify the initial
state (either 0 or 1 respectively) of the register. Registers must be initialized
simultaneously with being declared(i.e. if you are declaring a register, you must
use the init keyword). Use := to initialize given a wire or constant value on the
right of the operator.

1 /**

2 Declaring a variable of type register,

3 initializing the register with value O,

4 and assigning the input to the value of wireB
5 *x/

6 registerA := wireB init O0;

To retrieve the stored value of a register, use the keyword val before the
register variable name.
//Declaring a register and retrieving its value
ff := wireB init 1;
val ff; //outputs 1;
£f1 = val ff;

Bw N e

3 Lexical Conventions

A UNI-corn program is broken down and parsed into tokens through lexical
transformations. Tokens can be keywords, identifiers, operators, whitespace, as-
signment symbols, indexing symbols, punctuation, and various brackets. There
are no constants in UNI-corn with the exception of boolean 1 or 0.

3.1 Keywords

In addition to all logic gate names (see 3.5), the following are reserved keywords
and are not to be used as identifiers or otherwise:

from init
out main
for to
print

3.2 Identifiers

Identifiers are used to name variables and user-built modules. An identifier is a
sequence of letters and digits that must start with a lowercase letter. Uppercase
and lowercase letters are considered different characters. Identifiers can only be
established during variable or module declarations. Identifiers of different types
must have unique names(i.e.there cannot be a wire and a module with the same
name).

3.3 Comments

Comments are characters delineated by a specific combination of symbols and
contain characters that are not executed by the program. There are two types
of comments, Single-line and Multi-line comments.

3.3.1 Single-line Comments

Single-line comments are introduced with // and everything following the double
slashes is ignored by the compiler until a newline

3.3.2 Multi-line Comments

Multi-line comments are introduced with /** and terminated with **/ and
everything in between them is ignored by the compiler. There is no nesting of
comments.

3.4 Whitespace

Blanks, tabs, and newlines are ignored, except to separate tokens

3.5 Operators
3.5.1 and

and is an operator which takes in two single-bit wires, inclusive of the index of
an n-bit wire, and performs the boolean logical A operator on them.

1 a=1;
2 b =0;
3 c = a and b; //operator and takes in two wires
4 d = a[i] and b[i]; //operator and takes in two bits
5
6 //note:
7 x = 1;
8 y = 0;
9
10 x and y; //will output O
11 y and x; //will output 0
12 y and y; //will output O
13 x and x; //will output 1
3.5.2 or

or is an operator which takes in two single-bit wires, inclusive of the index of
an n-bit wire, and performs the boolean logical V operator on them.

© 00 N O s W N

R =
S W N =, O

3.5.3

a=1;
b =0;

a or b; //operator or takes in two wires
ali]l or b[il; //operator or takes in two bits

//note:
x = 1;
y = 0;
x or y; //will output 1
y or x; //will output 1
y or y; //will output O
x or x; //will output 1

nor is an operator which takes in two single-bit wires, inclusive of the index of
an n-bit wire, and performs the boolean logical | operator on them.

©W 00 N O ;s W N e

e e =
B W N B O

3.5.4 not

a=1;
b =0;

a nor b; //operator nor takes in two wires
al[il] nor b[i]; //operator nor takes in two bits

//note:
x =1;
y=0;

nor y; //will output O
nor x; //will output O
nor y; //will output 1
nor x; //will output O

<< M

not is an operator which takes in a single bit and negates it. You can also index
a wire to get a single bit then negate it. The not keyword comes before the
variable name

1

© 00 N O O s W N

=
= O

a=1;

not a; //operator not takes in a wire data type
not alil]; //operator not takes in the index of a wire

//note:
x = 1;
y =0;

not x; //will output O
not y; //will output 1

3.5.5 mnand

nand is an operator which takes in two single-bit wires, inclusive of the index of
an n-bit wire, and performs the boolean logical 1 operator on them.

© 00 N O O s W N

R e =
s W N = O

3.5.6

a=1;
b =0;

a nand b; //operator nand takes in two wires
al[i] nand b[i]; //operator nand takes in two bits

//note:
x = 1;
y =0;
x nand y; //will output 1
y nand x; //will output 1
y nand y; //will output 1
x nand x; //will output O

xor is an operator which takes in two single-bit wires, inclusive of the index of
an n-bit wire, and performs the boolean logical ® operator on them.

1 a=1;
2 b =0;
3
4 a xor b; //operator xor takes in two wires
5 al[i] xor b[i]; //operator xor takes in two bits
6
7 //note:
8 x =1;
9 y = 0;
10
11 x xor y; //will output 1
12 y xor x; //will output 1
13 y xor y; //will output O
14 x xor x; //will output O
3.5.7 xnor

xnor is an operator which takes in two single-bit wires, inclusive of the index of
an n-bit wire, and performs the boolean logical =@ operator on them.

e

a=1;

% b =0;
3
4 a xnor b; //operator xnor takes in two wires
5 ali] xnor b[i]; //operator xnor takes in two bits
6
7 //note:
8 x =1;
9 y = 0;
10
11 x xnor y; //will output O
12 y xnor x; //will output O
13 y xnor y; //will output 1
14 X xnor x; //will output 1
3.6 Relational and Equality Operators
Symbol Explanation Example
add a numeric value and is used
+ only when indexing on a wire myWire = a[i+1];
subtract a numeric value and is
- used only when indexing on a wire |myWire = a[i-1];
= assigns a value to a variable a = 1001;
= assigns a value to a register myReg := myWire;
; ends a line of code a=1001;
separates variables when
assigning values to multiple
) variables a1, a2 =0010;
indexes a multi-bit wire, can be
[l numeric a[3];
myModule(a,b) = { /**code
{ denotes code block here**/ }
denotes parameter and arguments
0 in definition and calling of modules |myModule(a,b) = {}
myModule(inputA<N>,
<> denotes use of generic intputB<N>){}
1/ single line comment /I comment here
/** open multiline comment /** comment here **/
/ close multiline comment / comment here **/
2 Signifies end of program o]
3.7 Punctuation
1 x = 10101; // current statement finishes here
2 y = 01010; // next statement begins & ends
3 // end of program

3.7.1 Semi-colon

In UNI-Corn the semicolon is used to denote statement separation. As a state-
ment separator, the semicolon is used to demarcate boundaries between two
separate statements.

3.7.2 Comma

The comma is used to denote assignment to multiple variables.

1 al, a2 = MODULEX(b,c);

2 / *%

3 both wire al and a2 are assigned to
4 the values b and ¢ of MODULEX

5 *x /

3.7.3 UNI-corn Emoji

The unicorn emoji is a file terminator that denotes the end of the program.

4 Modules

Modules are named functions that are defined by the user. They may accept
a number of parameters, perform a logical operation, and designate a number
of outputs using the out keyword. Modules can be “called” as long as the call
contains the same number of arguments as parameters in its definition.

1 // type x, y is wire

2 myModule(x,y){

3 a = 1011;

4 b = 1111;

5 out ¢ = a and b; //Designates c as the output of myModule
6

4.1 Input

Modules accept only wire types as parameters or Boolean values. Modules
should not mutate their input.

4.2 Output

The keyword out is utilized in order to retrieve the most recent call to an
instantiated module. There can be multiple outputs from a module

5 Module Automation

5.1 Counted Loops

In order to avoid the tedium of copy-paste, modules may contain loops.

1 for (i from 0 to 8){
2 al[i]l = inputA[i] and inputB[i];
3 }

10

Loops take the form of the keyword for followed by parens () containing
the iterator identifier (here i), the optional starting keyword from and its value
(here 0), and the keyword to followed by its value. In general, loops execute
the contained code, starting with initializing the variable i to the from value
(defaults to 0 if the from is omitted) creating the wires/modules listed within
the block of the loop in each step.

5.2 Generics

1 doThis (inputA<N>, intputB<N>){
2 for (i from 0 to N){
3 out a[i] = inputA[i] and inputB[i];
4 ¥
5 }
6 Scope

A module only has access to its inputs and wires declared within its brackets.
The only exception is that the main() method has access to everything within
that file. Any module can call any other module (as long as there is no recursive
definition), but a module can’t access another module’s wires, other than its
output.

//example

test(x,y){

a = 1011;

b = 1111;

c = a and b;

//the scope of wire a, b, and c is only within this module

}

©W 00 N O ;s W N

main(){
x = 11001;
//wire x, a, b, and ¢ (on lines 4-6) are visible in main()

}

R e =
B W N B O

7 Standard Library

The standard library contains a number of modules that are included in UNI-
corn as built-in modules.

7.1 Built-in Modules

Built-in modules may be called within any UNI-corn program. The current
built-in modules are print, concatwires, adder and split.

11

7.1.1 print

The print module will make use of the reserved word, print, and will print the
current value of a wire supplied as argument.
1 a 0001;
b 0010;
print(a);
//print the value of a, which is 1, to console
print(b);
//prints 2 to the console
print(b[3]);
//print the value of the 4th bit of b, O, to the console.

© 00 N O O s W N

7.1.2 concatwires

The concatwires module is a function that will combine two wires. The con-
catwires module takes in two wires as arguments and returns a single wire that
is a concatenation of the two supplied arguments. The first wire’s rightmost bit
is concatenated with the second wire’s leftmost bit. The resulting wire’s size is
the sum of the two wires’ original sizes.

1 a = 0010;

2 b = 1111;

3 ¢ = concatwires(a,b);

4 /%%

5 wire ¢ now holds the value of wire a concatenated
6 with wire b, 00101111

7 *x /

8

12

8 Sample Code

8.1 Combinatorial logic circuit

main (a[6], b[5]) {
rippleAdder(a, b);
}

fullAdder(al[0], b[0], carryIn[0]){
X = a xor b;
y = a and b;
Z carryIn and x;
out sum = x xor carryln;
out carryOut = y or z;

©W 00 N O ;s W N

P S S
w N = O
s

rippleAdder (a<N>, b<N>){
zero = 0;
out sum[0] = fullAdder(a[0], b[O0], zero) [sum] ;

=R e
(o B B

for (i from 1 to N){
lastCarry[i] = fullAdder
(ali-11, b[i-1], lastCarry[i-1]) [carryOut];
sum[i] = fullAdder(al[il, b[i], lastCarry[I]) [sum];

N N NN NN e
oo W N R O 0w 0 N
s
e

8.2 Sequential logic circuit

1
2 // Toggle circuit
3

4 seqCirc {

5 out ¢ = a xor b;
6 out d = not b;

7 a := c¢ init O;

8 b :=d init 1;

9 1}

10

11 main() {

12 x, y = seqCirc;
13 }

i
IS

13

