
SCoLang - Language Reference Manual

Table of Contents:
1. Introduction
2. Types

a. Basic Data types
b. Advanced Data types

3. Lexical Convention
a. Identifiers
b. Keywords
c. Comments
d. Operators
e. Punctuators

4. Syntax Notation and Program Structure
a. Precedence
b. Declaration
c. Assignment
d. Binding
e. Control Flow
f. Program Structure

5. Standard Library Functions

1. Introduction

In this document we propose, SCoLang, a strongly-typed
language that is made with the premise that everything is a
contract waiting to execute. Each contract in our language has
two key components: listeners and actions. In a contract, we
bound each action to a set of listeners. A listener is set active
once a set of predefined conditions are met. When all the
listeners in a contract are marked active, the associated actions
in the contract are executed.

The goal behind our language is to construct programs that
help eliminate inefficiency in routine tasks. For instance, one
could create a contract to turn on lights if a set of predefined
criteria are satisfied. In short, we envision that our language
could be used for anything from simple load balancing to complex
IOT applications.

2. Types

Basic Data Types:

long, float, char Regular primitive types

Array An aggregate data type; []
Python style (slicing,
referencing, etc)

bool Ternary data type: true, false,
null

String A text value. Can be a single
char or an arbitrary number of
chars concatenated together.

Advanced Data Types:

Contract A structure that stores
associated listeners with
actions. At a high level, this
binds listeners to actions and
then triggers actions if
conditions for listeners are
satisfied.

Listener A data structure that stores a
boolean condition. It also
handles checking to see if the
condition is met. (e.g. memory
usage exceeds a certain amount)

Action A data structure that stores an
event. This event is meant to
be triggered by a contract if
the conditions for the
associated listener(s) are
meant. (e.g. turn lights on)

3. Lexical Convention
Identifiers:
Identifiers consist of one or more characters with a leading
alphabetic character followed by any number of alphanumeric

characters or underscores.

Keywords:

Contract A structure that stores
associated listeners with
actions. At a high level, this
binds listeners to actions and
then triggers actions if
conditions for listeners are
satisfied.

Listener A data structure that stores a
boolean condition. It also
handles checking to see if the
condition is met. (e.g. memory
usage exceeds a certain amount)

Action A data structure that stores an
event. This event is meant to
be triggered by a contract if
the conditions for the
associated listener(s) are
meant. (e.g. turn lights on)

for standard for loop (for control
flow)

resolve Resolve a listener (conditions
satisfied)

reject Stop listening before satisfied
(conditions satisfied such that
it will never resolve)

if standard if (for control flow)

elif standard elif (for control
flow)

else standard else (for control
flow)

while standard while (for control
flow)

break Breaks the current control flow

continue Skips the current iteration
within an iterator

Comments:

/* Comment */
/*

Multi-line Comment
*/

Operators:
Unary Operators:

! Not

Binary Operators:

== Equal to comparative

!= Is not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

&& And operator

|| Or operator

Special Operators:

= Assignment

. Access elements underneath
composite data types

-> Binds listeners to actions to
create a contract

Mathematical Operators

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo

<< Bitshift left

>> Bitshift right

^ Binary XOR

& Binary AND

| Binary OR

Punctuators:

[] Array assignment and
referencing

() Statement Precedence

{} Code Blocks

; Statement boundary. Must be at
the end of each statement to
signal such.

4. Syntax Notation and Program Structure
Operator Precedence
The order of operators is as follows:

-> . []

!

* / %

+ -

>> <<

> < >= <=

== !=

& ^ |

&& ||

=

Declaration:
<type> <name>
long a;
long[] a;
Action[] actions;

Assignment:
Basic:

<type> <varname> = <varvalue>;
long a = 34333;
long[] arr = {1,2,3,4};

Advanced:
<type> <varname> = <codeblock>
Action display = {

print(a);
}
Listener listen = {

while(a != b)
{

if(a > b)
{

a -= b;
}
elif(b > a)
{

b -= a;
}

}
}

Binding:
<listener> -> <action>
Listener a = {...}
Action b = {...}

Control Flow:
if/elif/else structure

if(condition){
}
elif(condition){
..}
else {
..
}

for structure
for(initialization; terminal condition; increment) {
}

while structure
while(condition) {
}

Program Structure:
- Variables Declarations
- Listener Declarations
- Action Declarations
- Bindings

5. Standard Library Functions

webhook(String endpoint, int
port)

Initiates a connection to a
specified endpoint and port.
Returns a boolean (default 0,
set to 1 for a tick if the

endpoint is requested).

print(String str) Print a string that is passed
into the function into standard
out

