
 

Language Reference Manual 
Matlab Matrix Manipulation 

Shenghao Jiang(sj2914)  
Shikun Wang(sw3309) 
Yixiong Ren (yr2344) 

Date: Oct.15 2018 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
1. Introduction 3 

2. Data Types 3 
2.1 Primitive Data Types 3 
2.2 Structure and Advance Data Types 3 

2.2.1 Matrix 3 
2.2.2 Struct 3 

3. Lexical Conventions 4 
3.1 Identifiers 4 
3.2 Keywords 4 
3.3 Operations 5 

3.3.1 Basic Operators 5 
3.3.2 Matrix Operators 5 

3.4 Comments 6 

4. Syntax 6 
4.1 Loops and Statements 6 

4.1.1 Conditional Statements 6 
4.1.2 While loop 6 
4.1.3 For loop 6 

4.2 Expressions 6 
4.2.1 Associativity Rules 6 

4.3 Specifications 7 
4.3.1 Data Type 7 
4.3.2 Matrix 7 
4.3.3 Functions 7 

5. Standard Library Functions 7 
5.1 Built-in Functions 7 

5.1.1 Matrix calculations 7 
5.2 Image I/O 8 

6. Sample Program 8 

1 



 

1. Introduction 
“MMM” is a Matlab style matrix manipulation language that can be used to calculate matrix operations 
efficiently. Users are able to do matrix operations through both in-built and self-defined functions. Same 
operations can be applied to user defined struct to make code more concise and more efficient. Due to our 
implementation and optimization of basic matrix operations in Ocaml, the basic matrix operations will be 
fast. The application of this programming language ranges from image cropping, rotating, denoising, 
enhancement, edge detection, and color filtering. Users are able to define the struct and functions to 
process image more efficiently.  

2. Data Types 

2.1 Primitive Data Types 

Type Name Description 

int 32-bit signed integer  

float 64-bit float point number  

bool bool value for True/False 

 

2.2 Structure and Advanced Data Types 

2.2.1 Matrix 
Matrix is a data container that can hold only floats. Users can access individual elements in the matrix, or 
slice the matrix to have a new matrix. Each matrix is regarded as an array and a tuple of integer. The array 
contains all the elements in the matrix left to right, top to bottom, and the tuple indicates the number of 
row and columns of the matrix. 

2.2.2 Struct 
Structure is a way to group different types of data. A struct can be initialized by: 
struct name { 
     type element1; 
     type element2; 

2 



     … 
} /*No semicolon after the last element*/ 
Create a struct by: 
struct img1 = name(arg1,arg2,...) 
struct img2 = name(arg1,arg2,...) 
 
Once the struct is defined, users can access the data inside struct by: 
name.element1 
name.element2 

3. Lexical Conventions 

3.1 Identifiers 
An identifier of a variable consists of one or more characters where the leading character is a letter 
followed by a sequence letters, digits, and possibly underscores. 

3.2 Keywords 

Type Name Description 

if conditional statement that follows the syntax if-elif-else  

else conditional statement for completing if 

elif if(cond){statement} elif(cond){statement} else{} 

for for-loop follows the syntax for(init;cond;inc) 

while while-loop follows the syntax while(cond){statement} 

break breaking the iteration for for/while loops 

return ending current execution and return some values  

func keyword for declaring a function follows syntax func name(arg1,arg2,..) 

struct keyword for declaring a struct that contains data, struct name{type1 ele1; type2 ele2} 

matrix keyword for declaring a matrix contains int, float, matrix name = [...] 

int keyword for declaring a integer, int name  = ... 

float keyword for declaring a float, float name = …. 

3 



bool keyword for declaring a bool, bool name = true 

string keyword for declaring a string, string name = “....” 

true boolean type constant 

false boolean type constant 

3.3 Operations 

3.3.1 Basic Operators 

= value assignment, a=b 

+ - * / arithmetic operators  

-- ++  increment operators 

!= == < > <= >= comparison operators 

&& || ! logical operators 

3.3.2 Matrix Operators 

+ addition between matrices 

- subtraction between matrices 

* dot product of two matrices 

.* element-wise matrix multiplication 

./ element-wise matrix division 

M[a][b] select the ath row, bth column element 

M[:][b], M[a][:] select all the rows/columns with column/row index, return a matrix 

M[a:b][c], M[a][b:c] select row number a to b with column number c, return a matrix 

3.4 Comments 

inline comment style // comments can only comment one line 

multiple comment style /* comments */ can contain newline character inside 

4 



3.6 punctuator  
Semicolons at the end of each statement perform no operation but signal the end of a statement. 
Statements must be separated by semicolons. 

4. Syntax 

4.1 Loops and Statements 

4.1.1 Conditional Statements 
There are three conditional statements: if, else.  
The syntax of each of the statement is: 
if (condition) {statements} 
else {statements} 
There should always be a if statement before the else statements. 
The “{” and “}” besides the statements can be omitted. 

4.1.2 While loop 
The While loop syntax is: while (expr) {stats} 
The “{” and “}” besides statements can be omitted, but each statement must separate by “;” 
The loop condition expr can be an integer, a bool, and a comparison expression. 

4.1.3 For loop 
The For loop syntax is: for(init;cond;inc) 
The “;” that separates each part of the for loop expression cannot be omitted. 
The initial variable, conditional statement, and increment method should be a variable, comparison 
expression, and an expression that increments loop variable. 

4.2 Expressions 

4.2.1 Associativity Rules 

Tokens (Priority from High to Low) Associativity 

NEG   ! Right - Left 

*    / Left-Right 

.*   ./ Left-Right 

5 



++  -- Left-Right 

+  - Left-Right 

>    <=    <    >= Left-Right 

==    != Left-Right 

&& Left-Right 

|| Left-Right 

. Non-Associative 

: Non-Associative 

, Left-Right 

Else Non-Associative 

NOELSE Non-Associative 

= Right - Left 

return Non-Associative 

; Left-Right 

4.3 Specifications 

4.3.1 Data Type 
There must be a data type specifier in front of each variable name. The data type specifier can be the 
following: 
int name = val 
float name = val 
bool name = val 

4.3.2 Matrix 
The matrix specifier identifies a matrix variable. 
Example: 
matrix M[row,col] 
 row and col are integers and it initializes an matrix of zeros with number of rows and columns 
matrix M = [1,2;3,4;5,6] 
, is the identifier of elements in different columns, ; is to identify different rows. 

6 



4.3.3 Functions 
Example: 
func name (type arg1, <struct_name> arg2, ...) 
When defining a function, user needs to declare the func keyword followed by the name of the 
function. In the parenthesis where the inputs are defined, each input argument is separated by “,”. 
Input arguments include normal data type and the struct that user defined. 
The function is called by  
name (arg1, arg2, ...) 
The type of inputs during each call must match the input types when function is defined. 

5. Standard Library Functions 

5.1 Built-in Functions 

5.1.1 Matrix calculations 

Function Name Return Type Description 

height(matrix M) int return the number of rows in matrix 

width(matrix M) int return the number of columns in matrix 

sum(matrix M) float return the sum of all the elements in matrix 

mean(matrix M) float return the average of all the elements in matrix 

trans(matrix M) matrix transpose a matrix 

eig(matrix M) float calculate eigenvalues of a matrix 

inv(matrix M) matrix inverse a matrix 

det(matrix M) float calculate the determinant of a matrix 

cov(matrix kernel, matrix M) matrix apply a convolutional kernel to a matrix  

5.2 Image I/O 

Function Name Description 

imread(string filepath) load a image by giving the file path, return a struct of matrix 

7 



save(Image image,string filepath) save the image into the file path 

print(string str) print a string when called 

6. Sample Program 
The purpose of this program is to denoise the image by assigning the kernel to calculate the mean of the 
neighbors of every pixel. The Image type is a struct that contains one matrix which represents a 
black-and-white image. By calling some built-in functions such as height, width, and conv, the function 
will return the denoised image which is also Image type. 
  
// Definition of Image 
struct Image { 
    matrix BW 
} 
 
func noiseDeduction(<Image> sampleImage, int numOfIterations){ 
    matrix copyImage = sampleImage.BW; 
    height = height(copyImage); 
    width = width(copyImage); 
    matrix kernel = [1.0, 1.0, 1.0; 1.0, 1.0, 1.0; 1.0, 1.0, 1.0]; 
    int i;int r;int c; 
    for(i=0;i<numOfIterations;i++){ 
        for (r=1;r<height-1;r++){ 
            for (c=1;c<width-1;c++){ 
                matrix neighbor = copyImage[r-1:r+1][c-1:c+1]; 
                neighbor = neighbor .* kernel; 
                float averageNeighbor =  mean(neighbor); 
                copyImage[r][c] = averageNeighbor; 
            } 
        } 
        sampleImage.BW = copyImage;  
    } 
    return sampleImage; 
} 
 

8 


