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Machine learning (ML) is the area of computational science that focuses on
analyzing and interpreting patterns and structures in data in order to enable
learning, reasoning, and decision making. While the use of machine learning has
been around since the turn of the century, it has only recently become mainstream
in the industry. Today, 51% of enterprises across a variety of industries are deploying
machine learning in production. In fact, job titles such as “machine learning
engineer,” “deep learning engineer,” and “data scientist” are already widely used
terms. As these engineers will tell you, though, machine learning really boils down to
one thing: matrices.
 
A matrix is a two-dimensional array of scalars with one or more columns and one or
more rows. Matrix manipulations are often essential to machine learning algorithms,
where they are used as the input data when training algorithms. However,
implementing these operations in common programming languages (such as C,
C++, or python) can be extremely complicated and time-consuming. While libraries
and tools with more robust matrix manipulation tools exist, they are often expensive
and syntactically complex. With this motivation, we have decided to build a simple
language that supports matrix operations by design.
 

This chapter describes the lexical elements that make up MATRX source code after
processing. We refer to these elements as tokens. We specify five types of tokens:
keywords, identifiers, constants, operators, and separators. 
 
1.1 Comments

0 Introduction

1 Lexical Elements



The characters /* introduce a comment, which terminates with the characters */.
 
1.2 Identifiers
Identifiers are sequences of characters used for naming variables and functions.
Users may use letters and the underscore character ‘_’ in identifiers. Identifiers are
case sensitive, such that foo and FOO are two different identifiers.
 
1.3 Keywords
Keywords are special identifiers reserved for use as part of the programming
language itself. In MATRX, we have the following keywords:

break, char, col, continue, double, else, float, for, if, int,

matrix, return, row, void, while

 
1.4 Constants
1.4.1 Integer Constants
An integer constant is a sequence of digits, with an optional prefix to denote the
base. We use the prefixes ‘0x’ to indicate hexadecimal, ‘0’ to indicate octal, and no
prefix to indicate decimal. 
 
Here are some examples:

/* hexidecimal constants */

0xAB42

0x88

0x1

 

/* octal constants */

057

012

03

 

/* decimal constants */

2018

12

8



 
1.4.2 Character Constants
A character constant is usually a single character enclosed within quotation marks,
such as ‘A’. A character constant is of type ‘int’ by default. Some characters cannot
be expressed using only one character. To represent such characters, we use the
following:

\\ backslash
\’ single quotation mark
\” double quotation mark
\b backspace
\n newline
\t horizontal tab
\v vertical tab

 
1.4.3 Real Number Constants
A real number constant is a value that represents a fractional number. It consists of
a sequence of digits which represent the integer, a decimal point, and a sequence of
digits which represent the fraction.
 
Here are some examples:

4.7

4.

4

.7

0.7

 
1.4.4 String Constants
A string constant is a sequence of zero or more characters, digits, and escape
sequences enclosed within double quotation marks. A string constant is a one-
dimensional matrix of chars, where the elements of the matrix are characters (see
2.5). All string constants contain a null termination character (\0) as their last
character to indicate the end of the string.
 
Here are some examples:

/* a simple string constant */

"matrix languages are the best languages"



 
1.5 Operators
An operator is a special token that performs an operation. Full coverage of operators
can be found in Chapter 3 of this Language Reference Manual.
 
1.6 Separators
A separator separates tokens. White space is a separator, but not a token. We have
the following separators:

( ) [ ] { } ; , . :

 
1.7 White Space
White space is the collective term used for several characters: the space character,
the tab character, the newline character, the vertical tab character, and the form-
feed character. White space is ignored (outside of string and character constants),
and is therefore optional, except when it is used to separate tokens. 
This means that:

#include <stdio.h>

int main() 

{ 

  printf( "hello, world\n" ); 

  return 0; 

}

is functionally the same as:

#include int main() { printf( "hello, world\n" ); return 0; }

 
White space is not required between operators and operands, nor is it required
between other separators and that which they separate. 
This means that:

x++;

matrix m = [ [0, 1]

              [2, 3] ];

is equivalent to:

x ++;

matrix m = [[0, 1][2, 3]];



 
In string constants, spaces and tabs are included in the string.
This means that:

"This is a string with spaces."

Is not the same as:

"Thisisastringwithspaces."

 

2.1 Matrices
A matrix is a data structure that lets you store a two dimensional array of numbers. A
matrix has at least one row and at least one column. 
 
2.1.1 Declaring Matrices
Matrices can be declared by specifying an the identifier, the number of rows, and the
number of cols. Note that the type of data stored is not specified until the matrix is
initialized (see 2.1.2).
 
Here is an example:

matrix m[1][3]; /* declares a matrix with 1 row and 3 col */

 
2.1.2 Initializing Matrices
You can initialize elements in a matrix when you declare it by listing each row as a list
of elements separated by commas and enclosed by square braces. The data type
contained by a matrix and the number of rows and cols is determined when it is
initialized. Note that white space does not change the initialization (see 1.7).
 
Here is an example:

matrix a = [ [1, 2] [3, 4] ]; /* declares a matrix [1 2] */

                              /*                   [3 4] */

                             

matrix b = [ [1, 2]

             [3, 4] ]; /* declares the same matrix as above */

 

2 Data Types



When a matrix is declared with an incompatible number of rows and cols, we throw
an error:

matrix m[1][3];

 

m = [ [1] 

      [3, 4] ]; /* this will throw an error */

      

m = [ [1] 

      [3, 4] 

      [5, 6]; /* this will throw an error */

 
2.1.3 Manipulating Matrices
We provide operators for many mathematical operations on matrices (see 3.5). We
also provide several built-in functions:

cols(): returns the number of columns in the matrix
rows(): returns the number of rows in the matrix
elements(): returns the total number of elements in the matrix
empty(): returns 1 if the matrix has not been initialized
get(int row, int col): returns the element at [row][col]
set(int row, int col, NEW ELEMENT): sets the element at [row][col] 
printm(): prints the matrix

 
Note that the operations cols(), rows(), elements(), get(int row int col), set(int row, int
col), type(), and printm() will throw an error if the matrix that is being called on has
not been initialized.
 
Here are some examples:

matrix a = [ [1, 2] 

             [3, 4] ]; /* declares a matrix [1 2] */

                       /*                   [3 4] */

                       

int col = a.cols(); /* col is 2 */

int row = a.rows(); /* row is 2 */

int size = a.elements(); /* size is 4 */



int x = a.get(0, 0); /* x is 1 */

 

a.empty(); /* returns false */

 

a.set(0, 0, 2); /* a is now [2 2] */

                /*          [3 4] */

 

ptinfm(a); /* prints the matrix as [2 2] */

           /* .                    [3 4] */ 

 

 
Note that matrices are mutable, such that manipulating an element will change the
object in memory.
 
2.1.4 Multi-dimensional Matrices
We will allow for multi-dimensional matrices to be created, as long as all of the
matrices within the overall matrix hold the same type of data.
 
Note that uninitialized matrices cannot be added to another matrix, as they will not
yet have an assigned type, so it will be unknown whether or not their type matches
the type of the other matrices within the matrix.
 
Here are some examples:

matrix a = [ [ [ [ 1, 2 ] [ 3, 4 ] ] ]  [ [ [ 1, 2, 3 ] [ 4,

5, 6 ] ] ] ];

matrix b = [ [ 5, 6 ] , [ 7, 8 ] ];

matrix c = [ [ 9, 10, 11] [ 12, 13, 14 ] ];

matrix d = [ [ c ] [ b ] ];

 

matrix e = [ [ matrix m[1][3] ] [ matrix n [2][4] ]; 

/* this will throw an error because the matrices m and n have

not been initialized */

 



matrix f = [ [ [ [ 1, 2 ] [ 3, 4 ] ] ]  [ [ [ 1.0, 2.5, 3.6 ]

[ 4.7, 5.8, 6.3 ] ] ] ];

/* this will throw an error because the two matrices in f are

of different types */

 
 
2.2 Integers
Integer types can be used for storing whole number values. We support a 32-bit int
data type, which can hold integer values in the range of −2,147,483,648 to
2,147,483,647.
 
Here are some examples of declaring and defining integer variables:

int a;

int a = 10;

 
2.3 Floats
The float data type’s minimum value is stored in the FLT_MIN, and should be no
greater than 1e-37. Its maximum value is stored in FLT_MAX, and should be no less
than 1e37.
 
2.4 Doubles
The double data type is at least as large as the float type, and it may be larger. Its
minimum value is stored in DBL_MIN, and its maximum value is stored in DBL_MAX. 
 
Here are some examples of declaring and defining floating point and double
variables:

double d;

double d = 3.14;

float f;

float f = 10.0;

 
2.5 Chars
A char object may be used anywhere an int may be. In all cases the char is converted
to an int by propagating its sign through the upper 8 bits of the resultant integer. 
 



Here are some examples:

char w = '1';

char y = 'B';

 
We allow users to specify a string as a one-dimensional matrix of chars, where the
elements of the matrix are characters. All string constants contain a null termination
character (\0) as their last character to indicate the end of the string. 
 
We provide a built-in function for printing strings, printf. It accepts a string (one-
dimensional matrix of chars) as first argument, and prints subsequent arguments
according to specifications contained in this format string. Most characters in the
string are simply copied to the output; two-character sequences beginning with ‘‘%’’
specify that the next argument should be printed in a style as follows:

%d decimal number
%o octal number
%c ASCII character, or 2 characters if upper character is not null
%s string (null-terminated array of characters)
%f floating-point number

 
Here are some examples:

matrix hi = [['h', 'i', '\0']]; /* creates string "hi" */

printf("The magic word is %s.", hi); /* prints "The magic word

is hi."

 

3.1 Expressions
An expression consists of at least one operand and zero or more operators. An
operand is defined as a typed object such as a constant, variable, or function call
that returns a value. An operator specifies an operation to be performed on the
operand(s).
 
Here are some examples:

42

2 + 2

 

3 Expressions and Operators



We let parentheses group subexpressions. Innermost expressions are evaluated first.
In the example below, (3 + 10) is evaluated to 13 and (2 * 6) is evaluated to 12. Then,
12 is subtracted from 13. Finally, the result of that subtraction, 1, is multiplied by 2. 

(2 * ((3 + 10) - (2 * 6)))

 
3.2 Assignment Operators
Assignment operators store values in variables. The standard operator = stores the
value of its right operand in the variable specified by its left operand. The left
operand cannot be a literal or constant. 
 
Here are some examples:

int x = 10;

float y = 41.1 + 0.9;

 
Compound assignment operators perform an operation involving both the left and
right operands, and then assign the resulting expression to the left operand. Here is
a list of the compound assignment operators, and a brief description of what they
do: 

+= adds the two operands together, and then assign the result of the addition to
the left operand
-= subtract the right operand from the left operand, and then assign the result of
the subtraction to the left operand
*= multiply the two operands together, and then assign the result of the
multiplication to the left operand
/= divide the left operand by the right operand, and assign the result of the
division to the left operand
%= perform modular division on the two operands, and assign the result of the
division to the left operand

 
3.3 Incrementing and Decrementing
The increment operator ++ adds 1 to its operand. The operand must be a either a
variable of one of the primitive data types. You can apply the increment operator
either before or after the operand. 
 
Here are some examples:

int x = 1;



x++; /* x is now 2 */

 

char y = 'A';

++y; /* y is now 'B' */

 
3.4 Arithmetic Operators
We provide operators for standard arithmetic operations: addition, subtraction,
multiplication, and division, along with modular division and negation.
 
Here are some examples:

a = 5 + 3;

b = 43.5 - 1.5;

c = 5 * 10;

d = 35 / 5;

e = 78 % 26;

f = -5;

 
3.5 Matrix Operators
We support many mathematical operations on matrices, including determinant, dot
product, transpose, inverse, scalar multiplication, matrix addition, and matrix
multiplication. Note that these operations are only supported for matrices of int,
float, double, or char types. When such operations are called on a matrix that stores
some other data type, we throw an error.
 
Here are some examples:

matrix a = [[1, 0, 1]];

matrix b = [[0, 1, 0]];

matric c = [[0] 

            [1] 

            [0]];

 

matrix d = a + b; /* c is [[1, 1, 1]] */

matrix e = a * c; /* e is [[0]] */



 
3.6 Comparison Operators
Comparison operators can be used to determine how two operands relate to each
other (i.e. equal, one less than the other, one greater than the other). The result of
these expressions is 1 if the expression is true and 0 if the expression is false. 

/* equal-to operator */

if (x == y)

  printf('x is equal to y');

else 

  printf('x is not equal to y');

  

/* not-equal-to operator */

if (x != y)

  printf('x is not equal to y');

else 

  printf('x is equal to y');

  

/* less-than operator */

if (x < y)

  printf('x is less than y');

else 

  printf('x is greater than y');

 

/* greater-than operator */

if (x > y)

  printf('x is greater than y');

else 

  printf('x is less than y');

 
Note that elements of a matrix can be accessed using the built-in get() function and
compared if the data type stored is of type int, float, double, or char. If elements of
matrices that store different types are compared, we throw an error.



 
Here are some examples:

matrix a = [[1, 0, 1]];

matrix b = [[0, 1, 0]];

 

if (a.get(0, 0) == b.get(0, 0))

  printf('this will not print');

else

  printf('this will print because a[0][0] is 1 and b[0][0] is

0');

 

matrix c = [[1.0, 2.0, 3.0]];

matrix d = [[1, 2, 3]];

 

if (c.get(0,0) == d.get(0,0)) 

  printf('this will throw an error'); /* throw an incompatible

data type comparison error */

 
3.7 Logical Operators
Logical operators test the truth value of a pair of operands. Any nonzero expression
is considered true, while any expression that evaluates to zero is false. We use && to
test if two expressions are both true and || to determine if at least one of two
expressions is true. We prepend a ! to flip the truth value of an expression.
 

/* the logial and operator */

if ((x == 1) && (y == 2))

  printf('x is 1 and y is 2');

 

/* the logical or operator */

if ((x == 1) || (y == 2))

  printf('either x is 1 or y is 2');

  



/* the logical negator */

if (!(x == 1))

  printf('x is not 1')

 
3.8 The Comma Operator
A pair of expressions separated by a comma is evaluated left-to-right and the value
of the left expression is discarded. The type and value of the result are the type and
value of the right operand. This operator groups left-to-right. It should be avoided in
situations where comma is given a special meaning, for example in actual
arguments to function calls and lists of initializers.
 
Here is an example:

x++, y = x * x;

 
3.9 Operator Precedence
The following is a list of types of expressions, presented in order of highest
precedence first. Sometimes two or more operators have equal precedence; all those
operators are applied from left to right unless stated otherwise.
�. function calls
�. unary operators (including logical negation, increment, decrement, unary

positive, unary negative, indirection operator, address operator, type casting, and
sizeof expressions)

�. multiplication, division, and modular division expressions (including matrix
operations of these types)

�. addition and subtraction expressions (including matrix operations of these types)
�. greater-than, less-than, greater-than-or-equal-to, and less-than-or-equal-to

expressions
�. equal-to and not-equal-to expressions
�. logical AND expressions
�. logical OR expressions
�. conditional expressions

��. all assignment expressions, including compound assignment
��. comma operator expressions
 

4 Statements



Except as indicated, statements are executed in sequence.
 
4.1 Expression statement
Most statements are expression statements, of the form:

expression;

Usually expression statements are assignments or function calls. 
 
4.2 Conditional statement
The two forms of the conditional statement are: 

if ( expression ) statement

if ( expression ) statement else statement

 
In both cases the expression is evaluated and if it is non-zero, the first substatement
is executed. In the second case the second substatement is executed if the
expression is 0. As usual the ‘‘else’’ ambiguity is resolved by connecting an else with
the last encountered else-less if.
 
4.3 While statement
The while statement has the form:

while ( expression ) statement

 
The substatement is executed repeatedly so long as the value of the expression
remains non-zero. The test takes place before each execution of the statement.
 
4.4 For statement
The for statement has the form:

for ( expression-1opt ; expression-2opt ; expression-3opt ) st

atement

 
This statement is equivalent to:

expression-1;

while ( expression-2 ) {

statement

expression-3 ;

}



 
Thus the first expression specifies initialization for the loop; the second specifies a
test, made before each iteration, such that the loop is exited when the expression
becomes 0; the third expression typically specifies an incrementation which is
performed after each iteration. Any or all of the expressions may be dropped. A
missing expression-2 makes the implied while clause equivalent to ‘‘while( 1 )’’; other
missing expressions are simply dropped from the expansion above.
 
We include the following specialized for statements to iterate through matrices,
using the keywords ‘row’ and ‘col’. 

matrix a = [ [1, 2] 

             [3, 4]

             [5, 6] ]; /* declares a matrix [1 2] */

                       /*                   [3 4] */

                       /*                   [5 6] */

                      

for (row r in a)

  r *= 2; /* multiplies each row of matrix a by 2 */

             /* a is now [2 4]                       */

             /*          [6 8]                       */ 

             /*          [10 12]                     */ 

                 

for (row r in a) {

    for(col c in a) {

        printf("The number is %d\n", a.get(r, c))

    }

} /* prints "The number is 2"

            "The number is 4"

            "The number is 6"

            "The number is 8"

            "The number is 10"

            "The number is 12" */



 
4.5 Break statement
The break statement causes termination of the smallest enclosing while or for
statement; control passes to the statement following the terminated statement.
 
4.6 Continue statement
The continue statement causes control to pass to the loop-continuation portion of
the smallest enclosing while or for statement; that is to the end of the loop. 
 
4.7 Return statement
A function returns to its caller by means of the return statement, which has one of
the forms:

return ;

return ( expression ) ;

 
In the first case no value is returned. In the second case, the value of the expression
is returned to the caller of the function. If required, the expression is converted, as if
by assignment, to the type of the function in which it appears. Flowing off the end of
a function is equivalent to a return with no returned value.
 
4.8 Null Statement
The null statement has the form

;

 
A null statement is useful to carry a label just before the ‘‘}’’ of a compound
statement or to supply a null body to a looping statement. In the following example,
a null statement is used as the body of the loop:

for (i = 1; i*i < n; i++)

  ;

 

We allow users to define functions to separate parts of a program into distinct
subroutines. To write a function, you must create a function definition. Every
program requires at least one function, the main function, where the program’s
execution begins (see 5.5).

5 Functions



 
5.1 Function Declarations
You write a function declaration to specify the name of a function, a list of
parameters, and the function’s return type. A function declaration ends with a
semicolon. You should write the function declaration above the first use of the
function. Function declarations have the form:

return-type function-name (parameter-list);

 
The return type indicates the data type of the value returned by the function. A
function that does not return any data type has the return type void. The function
name can be any valid identifier. The parameter list consists of zero or more
parameters, separated by commas. A single parameter consists of a data type and
an identifier.
 
Here is an example:

int add(int a, int b);

 
5.2 Function Definitions
A function definition specifies what the function does. Function definitions must
specify the name of a function, the list of parameters, the return type, and the body
of the function. Function definitions have the form:

return-type function-name (parameter-list) 

{

  function-body

}

 
Here is an example:

int add(int a, int b) 

{

  return a + b;

}

 
5.3 Calling Functions
Functions are called by using its name and supplying the necessary parameters.
Function calls have the form:



function-name (parameters)

 
A function call can make up an entire statement or be used as a subexpression:

/* as an entire statement */

foo (5);

 

/* as a subexpression */

x = foo (5);

 
5.4 Function Parameters
Function parameters can be any expression—a literal value, a value stored in
variable, an address in memory, or a more complex expression built by combining
these. Within the function body, the parameter is a local copy of the value passed
into the function; you cannot change the value passed in by changing the local
copy. 
 
Here is an example:

int foo (int a)

{

  a = 2 * a;

  return a;

}

 

int x = 42;

foo (x); /* does not change the value of x */

x = foo (x); /* does change the value of x */

 
In the example above, even though the parameter ‘a’ is modified in the function ‘foo’,
the variable ‘x’ that is passed to the function does not change when ‘foo (x)’ is called.
The original value of x is only changed when we reassign ‘x = foo (x)’.
 
5.6 The Main Function
Every program requires at least one function, called ‘main’. This is where the
program begins executing. The main function does not need a declaration, but must



be defined.
 
The return type for main is always ‘int’. You do not have to specify the return type for
main; however, you cannot specify that it has a return type other than ‘int’. In
general, the return value from main indicates the program’s exit status. A value of
zero or EXIT SUCCESS indicates success and EXIT FAILURE indicates an error.
Otherwise, the significance of the value returned is implementation-defined.
 
The ‘main’ function can be written to accept no parameters or to accept parameters
from the command line. To accept parameters from the command line, the function
must have two parameters: argc (an int specifying the number of command line
arguments) and argv (a one-dimensional matrix of parameters).
 
Here are some examples:

/* main function with no arguments */

int main ()

{

  printf ("Hello World!");

  return 0;

}

 

/* main function with command line arguments */

int main (int argc, matrix argv)

{

  int i;

  for (i = 0; i < argc; i++)

    printf ("%s\n", argv[i]);

  return 0;

}

 

Scope refers to what parts of the program can “see” a declared object. A declared
object can be visible only within a particular function, or within a particular file, or

6 Scope



may be visible to an entire set of files by way of including header files and using
extern declarations. Unless explicitly stated otherwise, declarations made at the top-
level of a file (i.e., not within a function) are visible to the entire file, including from
within functions, but are not visible outside of the file. Declarations made within
functions are visible only within those functions. A declaration is not visible to
declarations that came before it. 
 
Here are some examples:

int x = 5;

int y = x + 10; /* this will work because x is already defined

*/

 

int x = y + 10; /* this will not work because y has not yet be

en defined */

int y = 5;

 
 

We plan to have file reading into matrices as part of our nice-to-haves. Adding this
feature would enable a user to feed data from CSVs or other file types in order to
initialize matrices to perform machine learning training. 

7. Nice To Haves


