

Casper
Language Reference Manual

Michael Makris

UNI: mm3443

COMS W4115 Programming

Languages and Translators

October 15, 2018

1

Introduction
Casper is a rather limited in scope general-purpose imperative language that resembles the C language, but
with emphasis on the high level than the traditional C low level capabilities. For example, it includes a String
data type and library functions to manipulate strings. In this respect, the language should be able to
implement many of the usual algorithms for applications that are programmed in C, Java, and Python.

A. Lexical Conventions
A1. Identifiers
An identifier is a sequence of letters, uppercase or lowercase, including the underscore _, and digits, with the first
character always a letter. Identifiers are used as tokens to identify variables and functions.

A2. Comments
Comments are ignored by the language compiler.

a) Line comments are signified from // to the end of the line.
b) Block comments are enclosed by /* some comment */ and can span multiple lines.

A3. Reserved words
The following tokens are reserved for use as keywords:

int float bool str void true false null if else for while do until break continue
return print Input

A4. Whitespace
Newline \n, carriage return \r, horizontal tab \t, and space are considered whitespace and together with the comments
they are ignored by the language compiler.

A5. Literals
A5.1 Integer literals
Sequence of digits 0 … 9, optionally signed (prefixed with + or -) representing integers.

A5.2 Floating point literals
Sequence of digits 0 … 9, optionally signed (prefixed with + or -), representing the integer part, followed by a period .
and another sequence of digits representing the fraction part. Either the integer or the fraction part may be missing but
not both.

A5.3 String literals
A sequence of characters surrounded by double quotes as in “abc” or single quotes as in ‘abc’. This allows for one type of
quote to be included in a string defined by the other type. Strings are immutable.

A5.3 Logical literals
true and false are tokens used in Boolean expressions.

A5.3 Null
The token null can be used for comparison expressions or assignments to any data type and represents the lack of any
value.

2

B. Data Types
Type Description Declaration syntax
Integer an integer depended on host machine int x = 0;
Floating point a floating point number float x=3.14;
Boolean reserved words true and false bool x = true;
String variable length sequence of characters str x = “abc”; str x = ‘abc’;
Void representing the empty set or no value void x;

C. Expressions
C1. Variables
Variables are declared as shown in the data type section above for the five data types and can be assigned an equivalent
type literal or null.

C2. Arrays
Single dimensional list of elements of the same type as the declared array for the Integer, Floating point and String
types. Can be initialized with an equivalent type literal or null, or by a same size and type array. Elements can be
accessed by position starting from 0 and are enclosed in brackets and separated by commas.

Type Description Declaration syntax
Integer an integer array int x[n]=0; x[1]=1;
Floating point a floating point array float x[2]=null; x[0] == x[1]
String a string array str x[2] = [‘abc’, “123”]; x[0] = x[1] _ x[2];

C3. Functions

C3.1 User-defined functions
Functions return a value of the data type they are declared as, except type void which returns null, and take a number of
arguments of any type. The argument list is enclosed in parenthesis and arguments are separated by commas. In the
function definition the body of statements is in braces and the keyword return with a value can exit the function and
return the value. Statements are terminated by a semicolon. As in C, main () is the special function that executes first.

Type Declaration syntax Definition syntax
Integer int myFun(myArg1, …); myFun (int x) {return x + 1;}
Floating point float myFun(myArg1, …); myFun(){return 3.14;}
Boolean bool myFun(myArg1, …); myFun(){return true;}
String string myFun(myArg1, …); myFun(){return “hello world”;}
Void void myFun(myArg1, …); myFun(){return null;}

 C3.2 Built-in functions (I/O)
print(str) to print to standard output
str = input() to read from standard input

3

C4. Operators

Operator Description Syntax
_ binary string concatenation ‘a’ _ “b”
? binary character at position “abc”?0 == “a”
+ binary arithmetic addition 1 + 2 1.0 + 2.0
- binary arithmetic subtraction 1 – 2 1.0 - 2.0
* binary arithmetic multiplication 1 * 2 1.0 * 2.0
/ binary arithmetic float division 1.5 / 2.5
% binary arithmetic modulus 1 % 2
^ binary arithmetic exponentiation 2 ^ 2 2.0 ^ 0.5
> binary relational greater than 1 > 2
>= binary relational greater than or equal 1 >= 2
< binary relational less than 1 < 2
<= binary relational less than or equal 1 <= 2
== binary relational equal 1 == 2
!= binary relational not equal 1 != 2
- unary negation -1
++ unary increment (pre or post) an integer int i = 0; i++; ++i;
-- unary decrement (pre or post) an integer int i = 0; i--; --i;
= assignment of right-hand expression to left-hand side int i = 0; str x = “abc”;
+= assignment of the sum of the two sides to the left-hand side int i = 0; i += 1;
-= assignment of the difference of the two sides to the left-hand side int i = 0; i -= 1;
&& binary logical AND x && y
|| binary logical OR x || y
! unary logical NOT !x

Precedence

Operator Associativity
() [] left to right
- ! ++ -- ? right to left
^ right to left
* / % left to right
+ - left to right
_ left to right
> >= < <= left to right
== != left to right
&& left to right
|| left to right
= += -= right to left

4

D. Control Flow
D1. Structure

a) White space is ignored
b) Statements terminated by ;
c) Expressions defined by () with no ; after
d) Compound statements/blocks and scope defined by {} with no ; after

D2. Conditional block
 if (expression1) {statement1;}
 else if (expression2) {statement2;}
 else {statement3;}

D3. Loops
 for (<optional initialization>; <optional termination expression is true>; <optional increment>)
 { <statements> }

 while (<test expression is true>) { <statements> }

 do { <statements> } while (<test expression is true>)

 do { <statements> } until (<test expression is true>)

with keyword break allowed in statement block to exit loop and keyword continue to jump to the next
iteration.

	Introduction
	A. Lexical Conventions
	A1. Identifiers
	A2. Comments
	A3. Reserved words
	A4. Whitespace
	A5. Literals
	A5.1 Integer literals
	A5.2 Floating point literals
	A5.3 String literals

	B. Data Types
	C. Expressions
	C1. Variables
	C2. Arrays
	C3. Functions
	C4. Operators

	D. Control Flow

