
GRIDLang
Grid Based Game Programming Language

PLT Spring 2017

Team

Player Akshay_Nagpal,

Dhruv_Shekhawat,

Parth_Panchmatia,

Sagar_Damani ;

Main Goals

• Design games in an intuitive and expressive manner

• Quickly prototype grid-based games and get a programmatic view

• Simplify the process of :

• defining rules for a game

• grid creation and manipulation

• in-built language components that enable programmer to express
more with less lines of code

Core Features

• Strongly typed

• Move Driven

• Structs, Pointers, Arrays(1D & 2D)

• Standard Library

Initialize Grid

0123456

| | | | | | | |0

| | | | | | | |1

| | | | | | | |2

| | | | | | | |3

| | | | | | | |4

| | | | | | | |5

| | | | | | | |6

Grid_Init<7,7>;

Creating Player and item structs

Player

{

Piece horse h1,h2,h3;

int score;

}

Piece horse

{

int value;

}

Adding to Grid

Player p1;

int setup(){

p1.h1.displayString = "h1";

p1.h2.displayString = "h2";

p1.h3.displayString = "h3";

Grid<3,6> <-- p1.h1;

Grid<3,2> <-- p1.h2;

Grid<5,2> <-- p1.h3;

return 0;

}

printGrid();

0__1__2__3__4__5__6_

| | | | | | | |0

| | | | | | | |1

| | | | | | | |2

| | |h2| | | |h1|3

| | | | | | | |4

| | |h3| | | | |5

| | | | | | | |6

NULL NULL NULL

NULL NULL NULL

NULL NULL NULL

Grid Initialization

GenericPiece from MiniChess

Piece GenericPiece

{

Piece King* King_node;

Piece Pawn* Pawn_node;

Piece Bishop* Bishop_node;

int x, y ;

Piece GenericPiece* next ;

string nametag, typetag ;

Player* owner ;

}

Piece King

{

// programmer’s code

}

Piece Pawn

{

// programmer’s code

}

Piece Bishop

{

// programmer’s code

}

NULL NULL NULL

NULL Piece* horse h_node;

Piece* bishop b_node = b1;

typetag = “bishop”

nametag = “b1”

owner = “black”

NULL

NULL NULL NULL

NULL NULL NULL

NULL Piece* horse h_node;

Piece* bishop b_node = b1;

typetag = “bishop”

nametag = “b1”

owner = “black”

NULL

NULL NULL NULL

Piece* horse h_node = h1;

Piece* bishop b_node;

typetag = “horse”

nametag = “h1”

owner = “black”

next

Control Flow

Mini Chess

Bishop Rule - Check if Move is Diagonal

if(abs(dst_x - src_x) == abs(dst_y - src_y))

Bishop Rule – Check if Diagonal is Blocked

if (traverse(src_x, src_y, dst_x, dst_y) == 1) {

return 0;

}

Colocation

int colocation(int x, int y, Piece GenericPiece* i1, Piece GenericPiece* i2)

{

deleteFromGrid(x,y,i2.nametag);

return 0;

}

checkGameEnd (Snakes and Ladders)
int checkGameEnd()

{

Piece Token *t;

Piece GenericPiece *token;

t = getCurrentPlayer();

token = getPieceFromGrid(t.displayString);

if (token.x == 0 && token.y == 5){

printGrid();

print("Winner is: ");

print(t.displayString);

return 1;

}

return 0;

}

Lessons Learned

• Have a concrete plan of what your language does.

• Team matters a lot. Choose team members based on their ability to learn.

• Two heads are better than one.

