
yeezyGraph - a Graphing Language

Kiyun Kim (ckk2117)

Nancy Xu (nx2131)

Wanlin Xie (wx2161)

Yiming Sun (ys2832)

February 8, 2017

1 Introduction

yeezyGraph is a language that is built upon graph structures - a set of nodes and edges.

Graph structures model the relationships (edges) between a group of objects (nodes). Be-

cause the structure of a graph itself is so simple, a graph can be used to represent much more

complicated problems. For example, finite-state automata can be represented as directed

graphs, puzzles can be reorganized as configuration graphs, and recursive algorithms can be

shown as dependency graphs.

yeezyGraph is designed to facilitate the creation of graphs and the writing of graph al-

gorithms, so that users are not bogged down by graph creation. yeezeGraph will not only

implement the graph the user wishes to represent, but also output a model of the structure

that is easily configurable for further applications. For the purposes of this language, all

graphs are treated as directed graphs with weighted edges–that is, every edge travels in

one direction, and every edge has a value assigned to it as its weight. Because undirected

graphs and unweighted edges can be simulated using directed graphs and weighted edges,

this choice has little impact on the user’s ability to create a wide variety of graphs, and

allows for a simpler syntax to support the goal of this language.

2 Language Features

2.1 Types and Literals

2.1.1 Primitive Types

Boolean (bool): the boolean data type has only two possible values - true and false.

Integer (int): an integer, typically reflecting the natural size of integers on the host

machine.

Floating point (float): single-precision floating point.

String (string): a sequence of zero or more characters, enclosed in double quotes.

1

2.1.2 Derived Types

List (map): an ordered collection of elements.

Map (map): a mapping of keys to values. A map cannot contain duplicate keys; each key

can map to at most one value.

Queue (queue): holds elements prior to processing.

Node (node): a vertex of a graph. A node consists of the fields value, visited,

inNodes, as well as outNodes. value is of type string, and represents a value that is

associated with that particular vertex. visited is of type bool, and indicates whether

the particular node has been visited or not.inNodes is of type map, which maps a node

that has a directed edge into our node in question, to the value of the particular edge’s edge

weight. outNodes is of type map, which maps a node that has a directed edge out from

our node in question, to the value of the particular edge’s edge weight.

Graph (graph): a graph is a collection of nodes. A graph consists of the sole field nodes,

which is a list of node vertices in the particular graph.

2.2 Operators

2.2.1 Variables and Assignment

The = operator is used to assign the value of an expression to an identifier.

2.2.2 Arithmetic Operators

The operators for integer and floating-point arithmetic are +, -, *, /, and %. The unary -

operator has the highest precedence, followed by the binary *, /, and % operators, followed

by the binary + and - operators. All arithmetic operators are left-associative. There is

automatic promotion from int to float.

2.2.3 Logical and Relational Operators

The relational operators are <, <=, >, >=, which have the highest precedence, followed by

the equality operators == and !=, then &&, then ||. When comparing equality, primitive

types are compared by value, while derived and user-defined types are compared by reference.

2.2.4 String Operators

The + operator concatenates strings and returns a new string.

2.2.5 Node Operators

->: node1 -> node2, num adds a directed edge of weight num from node1 to node2.

!->: node1 !-> node2 removes the edge that exists between node1 and node2.

==: node1 == node2 compares node1 against node2 and returns true if they refer to the

same node, false otherwise.

2

2.2.6 Graph Operators

No operators exist for the graph, as the graph is simply a collection of nodes.

2.3 Built-In Functions

2.3.1 Node Built-in Functions

print(node): prints the name of the node.

getNode(name): retrieves/creates a node with the given name.

setNode(string name, List<Map<Node, weight>> incoming, List<Map<Node,

weight>> outgoing): modifies the adjacency lists of the node with the given name.

2.3.2 Graph Built-in Functions

addGraph(Graph 1, Graph 2, List<Node> map1, List<Node> map2, List<float>

edgeWeights): returns a copy of the addition of the two graphs, whose connectivity is

determined by the mapping of the nodes given by the two lists and the list of the edge

weights.

print(graph): outputs an image of the graph.

iterateThrough(): traverses the graph and prints out all the nodes within the graph.

is connected(): returns a boolean value dictating the connectivity of the graph.

has unvisited nodes(): returns a boolean value stating whether the graph still has

unvisited nodes.

3 Source Code

1 // Dec la ra t i on o f a node

2 Node x1 = ”1” ;

3 Node x1 = ”2” ;

4 Node x1 = ”3” ;

5 Node x1 = ”4” ;

6

7 //Adding edges

8 x1−>x2 , 3

9 x2−>x3 , 2

10 x3−>x4 , 1

11 x4−>x1 , 4

12

13 // Create a graph

14 Graph g1 ;

15 g1 . add (x1) ;

3

16 g1 . add (x2) ;

17 g1 . add (x3) ;

18 g1 . add (x4) ;

19

20 // p r in t graph

21 pr in t (g1)

22

23 // Implementation o f a BFS

24 BFS (Graph G, Node s) {
25 Queue q ;

26 whi le (Graph G. h a s u n v i s i t e d n o d e s ()) {
27 q . enqueue s ;

28 s . v i s i t e d = true ;

29 whi le (! q . empty ()) {
30 V = q . dequeue () ;

31 pr in t (V) ; // p r in t proce s sed node

32 // proce s s a l l ne ighbors o f V

33 f o r (i n t i = 0 ; i < V. inNodes . Count ; i++) {
34 i f (V. inNodes . getKey (i) . v i s i t e d = f a l s e) {
35 q . enqueue (V. inNodes . getKey (i))

36 V. inNodes . getKey (i)) . v i s i t e d = true

37 }
38 }
39 }
40 }
41 }

4

