
shux Language Proposal

Lucas Schuermann (lvs2124), John Hui (jzh2106), Mert Ussakli (mu2228),
Andy Xu (lx2180)

February 7, 2017

1



1 Goals and Philosophy

We would like to create a language optimized for expressing, simulating, and rendering
particle-based (Lagrangian) physics problems. Currently, though many implementations of
solvers for such problems exist, they are frequently overly verbose, poorly organized and
poorly optimized, and cluttered with helper code for rendering, spatial gridding, and mul-
tiprocessing. By introducing a revised syntax, better-suited semantics and adequate ab-
straction, we wish to build a general-purpose language better catered towards the needs of
particle-based physics simulations.

Our language aims to be fundamentally based upon coroutines comprised of local vari-
ables and pure functions, which can be processed asynchronously over the set of all simu-
lated particles. Other features, such as variable state lookback, inferred strong typing, and
built in functional mathematical expression representation and optimization features help
to facilitate a maximally concise and minimally error-prone user experience when solving
domain-specific problems, largely in physical phenomena simulation, as modeled by particle-
discretized partial differential equations.

2 Problem Description

Though physics simulation is a massive field with many areas of active research, much em-
phasis is given to so-called Lagrangian problems, or particle-based discretization schemes,
commonly encountered when modeling phenomena such as granular materials, fluid dynam-
ics, cloth, and many others. Past work in particle-based simulation includes discrete element
methods (DEM) for granular materials (i.e. sand), smoothed particle hydrodynamics-type
methods (SPH) for free surface fluid flow (i.e. water), extended predictive-corrected SPH
and other methods (PCISPH) for more complex fluid flows (i.e. viscous fluids, such as honey,
viscoelastic materials), ball-spring models for cloth simulation, astrophysical n-body simula-
tions, and, in more recent literature, unified particle-based physics solvers for use in real-time
simulation by means of explicit boundary condition modeling.

To briefly expound upon the structure of a canonical particle-based simulation, there are
a number of common parts which we will aim to simplify. Consider the case of fluid simula-
tion with smoothed particle hydrodynamics. In general, a number of particles are defined,
each storing quantities such as position, velocity, pressure, density, and so on. The simulation
as a whole must store the state of a number of particles (usually hundreds or thousands),
define a number of methods to update these states, and then loop over time, calling these
methods before re-rendering to the screen. Common methods include integration, boundary
conditions, and pressure/density calculations, applied without order to all particles, but with
only the latter depending on neighboring particles in the simulation. In the case of methods
which depend on neighboring particles (imagine spring forces or gravitational forces), the
algorithmic efficiency can be improved from O(n2) to O(n) by means of a spatial gridding
system, into which all particles are sorted at each time step (loop). Other considerations
include ease of expression of different functions applying to particles, for example, wanting to

2



switch out different integration functions from Euler (1st order) to Runge-Kutta (4th order)
and the ease of parallelization since applications of rules such as integration to the set of
particles can be executed at the same time, proportional to the number of computing cores
on the machine.

3 Language Features

1. C-like syntax

2. Type inference, strong/strict typing

3. Immutable variables by default

4. Coroutines (locally stateful) and kernels (pure functions) for easy parallelization

5. Easy (built-in) control flow for iteration over element sets

6. Variable state lookback feature: Historical variable access for use in integrators and
other past state dependent methods

7. Anonymous functions

8. Anonymous variables for writing simple math (temporary intermediate objects)

9. 1st class and higher order functions, assignable to objects, support maps etc.

10. Types: int (8 bytes), float, string, boolean, vector, matrix, grid

(a) Grid includes easy filters and selectors for iteration

11. Extensible structs for polymorphic data type definitions

shux will introduce a “lookback” feature for immutable variables, which exposes historical
values of variables in an iterated function to the programmer. This is an often necessary
feature in mathematical and physical models like Euler’s approximations, fluid dynamics
calculations, or the Runge-Kutta method.

Our language will also have type inferencing, but still enforce strong typing, which is most
convenient for mathematical programming.

shux will implement coroutines, locally stateful functions, to represent iterative steps.
Coroutines will serve as a convenient way to represent iterative computations, and can be
thought of in an equivalent sense as generators. We will be handling multiple coroutines
asynchronously and with trivial extension to parallel processing.

Along with coroutines, we will support kernels, which are pure functions with map-like
features to produce new set of variables from and old set of variables and update coroutine
iterations. These two features are intended to be best-suited for physics simulations, where

3



iterative mathematical computation is always necessary.

We don’t want to encounter synchronization issues, therefore we will implement variables
that will be immutable by default. All variable updates are map-like, in that they can only
produce a new set of variables. This is also in line with our functional philosophy.

Lastly, rendering will be handled by built-in language features to simplify the process of
creating a window, and displaying particles from vertex buffers, intended to be generated
from an array of particle positions at the end of each coroutine loop.

4 Example Program: Euler’s Method

// declare type-inferred global constants

let dt = 0.01;

let g = <0, -9.8>;

// define abstraction struct for particle

struct particle {

float x, v;

}

// named definition of kernel function

// takes in a parameter of type particle, and returns another particle

fn euler_kernel(particle p) -> particle {

// implicitly returns last expression in a block

// constructs an anonymous temporary particle value to be returned

particle : {

// since we’re trying to implicitly lookback on an argument

// this kernel cannot be used on history-less variables

.v = p.v..1 + g * dt;

.x = p.x..1 + p.v..1 * dt;

}

}

// define coroutine that takes in a list of particles and returns

// another list of particles

co euler(particle[] init) -> particle[] {

// create named value to store its history

// use ‘@‘ operator to map through all_particles with a lambda

val particle[] all_particles = all_particles @ p -> {

4



particle : {

.v = p.v..1 + g * dt;

.x = p.x..1 + p.v..1 * dt;

}

// returned particle uses the previous value of the particle

} : init

// default value of init if lookback of 1 does not yet exist

// since the above is the only (and thus last) expression of this coroutine

// its value is yielded every iteration

}

// code entry point

fn main() {

// initialize particle array of size 10, all fields 0’d out

var particle[10] p_init = {0};

// declare another couple of arrays to which we will assign

var particle[] p_40, p_40_select;

// a coroutine generates an array (partcle[][]), meaning we can map over it

for 1000 euler(p_init) @ state -> {

// display every state (particle[]) by sending it to OpenGL

// using library function

displayf(state);

// since last line ends with ‘;‘, nothing is returned

}

// can also just let euler() run for 40 iterations without doing anything

// and retrieve the resulting state

// arrays copied over using ‘=‘

p_40 = do 40 euler(p_init);

// use ‘::‘ operator to filter through p_40 and return subset

p_40_select = p_40 :: p -> {

// only return particles to the southeast of <4, 4>

bool : p.x<0> < 4 && p.x<1> < 4

};

displayf(p_40_select);

}

5


