
Twister

Annalise Mariottini (aim2120) Arushi Gupta (ag3309)
Anand Sundaram (as5209) Chuan Tian (ct2698)

February 8, 2017

1 Language Description
Twister is a language designed for matrix mathematics with basic support for file input and output.
It is an imperative programming language with first-class functions and a sparse set of built-in
types, including a matrix type.

2 Intended Applications
Twister is intended to be used for image manipulation with efficient implementations of linear
algebra operations such as convolution. Twister programs may be used to read in images, sharpen,
de-noise, and write out images. Twister can be used by anyone from selfie lovers to image designers.
It implements a simple to use pipe operation that allows users to chain together alterations made
to images. It also provides built-in support for element-wise matrix operations.

3 Parts of the Language

3.1 Types
Primitive Types

Scalar primitive types
Type Description Initialization Example

int an integer int a = 5
float a float float a = 5.2

Other primitive types
Type Description Initialization Example

bool a boolean bool x = True
char a character char x = ’a’

Complex Types

Type Description Attributes Initialization Example

List a mutable linked list length List l = {’a’, ’b’,’c’}
String a List of chars length String s = ’hello’
Tup an n-tuple of value [i] Tup t = (0, ’a’, 5.2)
Struct a collection of specified types — Struct pt = {int x; int y;}
Matrix a series of scalar arrays [i], dim[i], dims Matrix m = [0,0,0;0,0,0]

Object Typing

The List and Matrix objects have associated value types that are defined either upon initializa-
tion or upon being declared with a specific type. This typing may also be specified for function
arguments and return values (see section 3.5 Built-in Functions).

1

Matrix M = [1,1;1,1]; // automatically typed to int
List<float> N; // manually typed to float

Additional Matrix Initializations

Multidimensional
Dimension Initialization

2 [0,0;0,0]
3 [0,0;0,0];[0,0;0,0]
4 [[0,0;0,0];[0,0;0,0]];[[0,0;0,0];[0,0;0,0]]

Function Initializer
In addition to initializing a Matrix with an array literal, one may also initialize with an n-tuple
and an iterative function to initialize individual values based on position. For a matrix of n
dimensions, the last n arguments of this initializer function will represent the (x, y, . . . n) position
currently being initialized. This function must return either int or float. If the user does not have
a initializer function specified, the matrix will initialize to zeros.

Matrix M = ((3,2), fill_val(1)); // [1,1,1;1,1,1]

3.2 Operators
Arithmetic Operators

Operator Description

− the subtraction operator
+ the addition operator
∗ the multiplication operator
/ the division operator
%% the modulo operator
.operator element-wise matrix application

The arithmetic operators may be used on scalars as expected. The ∗ operator may be used on
matrices to perform matrix multiplication. All arithmetic operators may be preceded with a ’.’ to
perform element-wise operations of one matrix upon another matrix of identical dimensions, or a
scalar upon a matrix.

Matrix a = [2,2;2,2];
Matrix b = [1,0;0,1];
int x = 3;

b .+ x; // returns [4,3;3,4]
a .* b; // returns [2,0;0,2]
a * b; // returns [2,2;2,2]

Functional Operators

Operator Description Example

| function composition transpose(A) | convolution(this, kernel, 1)
The functional operator pipes the return value of the left-hand-side function into the ’this’ keyword,
to be used in the arguments of the right-hand-side function.

2

Logical Operators

Operator Description Examples

== equality comparison operator 1 == 1 // True
> greater than operator 1 > 2 // False
< less than operator 1 < 2 // True
and takes two bools and returns their AND (1 > 2) and (2 == 2) // False
or takes two bools and returns their OR (1 > 2) or (2 == 1) // True
not returns the negation of a boolean not (1 == 1) // False

Bitwise Operators

Operator Description Example

&& bitwise and 1 && 2 // 0
|| bitwise or 1 || 3 // 3
∗| bitwise xor 1 *| 3 // 2
<< left shift 1 « 1 // 2
>> right shift 2 » 1 // 1
! bitwise not !0 // -1

3.3 Flow Control
For Loops

A ’for’ loop is defined as an iteration over an ordered list with a named variable to represent the
current element.

for(elem in range(0,3)) {
print(elem);

} \\ output:
\\ 0
\\ 1
\\ 2

If-Else Statements

Users can check booleans and conditionals with if statements, with an optional else block to run if
the condition is not satisfied.

int a = 5;
if (a == 5) {

print(’a was 5’);
} else {

print(’a was not 5’);
} \\ output: a was 5

3.4 Built-in functions
Function Description

map applies an element-wise function to a Matrix
reduce folds a function across a Matrix or List
fread takes a file name as a string and outputs a Matrix
fwrite takes a Matrix and a file name and write the Matrix to the file
print takes a String and a file and writes the string to the file
range takes two arguments a and b, returns a List of ints = {a, a+ 1, ..., b− 1}

All functions are first-class objects and support currying and argument/return type specification.

3

fun sum = (x: int, y: int) -> int {
return x + y;

};

fun sum_matrix = (m: Matrix<int>) -> Matrix<int> {
return reduce(sum, m);

};

Matrix a = [1,2;3,4];

sum_matrix(a) \\ returns 10

4 Example Program

fun square = (x: int) -> int {
return x * x;

};

fun square_matrix = (m: Matrix<int>) -> Matrix<int> {
return map(square, m);

};

fun transpose2D = (image: Matrix<int>) -> Matrix<int> {
Tup newDims = (image.dims[1], image.dims[0]);
fun swapVals = (x: int, y: int) -> int {

return image[y][x];
};
return Matrix(newDims, swapVals);

};

fun fill = (apply: int, x: int, y: int) -> int {
if (x %% 2 == 0 and y %% 2 == 0) {

return apply;
} else {

return 0;
}

};

Matrix a = fread(’\Home\image.bmp’);
Matrix b = Matrix((2,2), fill(2)); \\ [0,0;0,2]

a = transpose2D(a) | square_matrix(this) | this * b;

fwrite(’\Home\image2.bmp’, b);

4

	Language Description
	Intended Applications
	Parts of the Language
	Types
	Operators
	Flow Control
	Built-in functions

	Example Program

