
Music-mike
Introduction

Western music is usually notated on a five-line staff, on which notes are given a duration based on
symbol type, and pitch based on location in the staff. Composers can use proprietary software such
as Sibelius or Finale to manipulate a virtual five-line staff through mouse clicks or keyboard
gestures. Fans of computer music might instead use music synthesis libraries to programmatically
create music in languages such as C++, but such libraries can be unintuitive for musicians
unfamiliar with signals and waves.

We propose Music-mike, a strongly typed, high-level, functional programming language, to give
users an alternative option in music creation. Music-mike is designed for users to create music
based on varied manipulations of short patterns. We owe this idea to Note Hashtag, a previous
project completed in COMS W4115. However, unlike Note Hashtag, Music-mike is modal rather
than key-based. Furthermore, lists - treated as the fundamental building block of music - are
manipulated with special list operators (syntactic sugar) which create an intuitive interface based
on traditional staff notation.

Design Ethos

The most basic unit in music is a note, which can be decomposed into pitch and duration. A simple
melody can thus be described as two lists: one list of pitches and another of durations. A chord is a
collection of notes played simultaneously.

A set of pitches is defined as a mode. All modes are subsets of the chromatic scale, which contains
all twelve pitch classes used in Western music. Most music constrains the pitches of its notes to a
small set of familiar modes, such as the major and minor scales. The sound of a chord is very much
dependent on the mode that its notes come from.

Music-mike is based on the following observations regarding Western music: one, that Western
music is fundamentally chordal and modal. Two, that Western music is repetitive and manipulative:
simple building blocks of music are modified, then repeated multiple times in a piece. Finally, and
most importantly, that these simple building blocks can described using lists and altered using a
functional paradigm.

Features

In programming speak: - Functional Programming (Maps and stuff) - Immutable Everything -
Intuitive List Defintion and Manipulation - Sweet Syntactic Sugar

(Don't worry, these features will be outlined in the example program.)

In music speak: - Phrases can be: augmented, diminished, transposed, or even mapped to different
modes! - Melodies can be placed on a timeframe allowing for easy polyphonic composition.

Example Program

The bread and butter of Music-mike are the unique list constructors. Lists can only take one type in
Music-mike, similar to OCaml.

Square brackets construct a "normal" list. Double square brackets [[]] are designed for convenient
creation of rhythm lists and take expressions that are converted to floats. Angular brackets < >
facilitate pitch list creation. These constructors manipulate their contents in subtle ways that are
explained in the comments below.

// Happy Birthday. Oh by the way, this is a single line comment. Nested comments
will
// not be supported.

mode = MAJOR;
// Alternatively could define as major=[1 3 5 6 8 10 12];

rhythm = [[8o 16 4 4 4 2 8o 16 4 4 4 2 1]];
// o is an operator that “dots” a rhythm unit.
// The actual rhythm here is: Dotted Eighth Note - Sixteenth Note - Quarter Note
... etc.
// So [[]] constructor takes int-expressions and takes their inverse.

pitches = <1&5 5 6 5 ^1 7 5 5 6 5 ^2 ^1 0>;
// The prefix operator ^ moves up pitch by an octave.
// The infix operator & creates a chord. Actually, every note is a chord of one for
type consistency.
// Zero notates a rest.

melody = wrap(mode, pitches, rhythm);
// Function arguments in parentheses and separated by commas, “C4” is string
representing start note.

fun Ascend x = x#;
new_pitches = map(Ascend, pitches);
new_melody = wrap(mode, new_pitches, rhythm);
//now our tune is in key of C# major

fun Augment x = x*2;
new_rhythm = map(Augment, rhythm);
more_melody = wrap(mode, pitches, new_rhythm);
//now twice as long as the original melody

timeline = plot(more_melody, 0);
// This assigns a start time to the melody by placing it in a timeline object.
synth(timeline);
// This generates .wav file.

Team Members

Name UNI Role
Husam Abdul-Kafi hsa2136 Systems Architect
Mounika Bodapati lmb2254 Manager

Name UNI Role
Kaitlin Pet khp210 Tester
Harvey Wu hw2473 Language Guru

