
1

M/s

Managing distributed workloads

Benjamin Hanser (bwh2124)
Miranda Li (mjl2206)
Mengdi Lin (ml3567)

Language description
M/s is suited for creating programs implementing a distributed system (master-slave
relationship), distributing workload across different nodes within a system. In this language,
there exist a “master” that is responsible for job load distribution, and “slaves” that are nodes
that receive jobs from the master and execute these jobs.

The user will define jobs that slave nodes will run, and define how to reassemble the output of
these jobs back to the user. The jobs will be issued to each slave node in a round robin way.
The language hides the tedious socket handling, threading, and packet serialization from the
user. The language supports primitives like int, double, string, and vector; control flow; loops in
c-like syntax.

Potential applications
● For a database system that has hefty computation jobs, our language can be used to

quickly code up a program that allocates jobs to different nodes within a database
system

● Our language can be used to implement client-server applications where
communications are done via the form of jobs

Syntax
Data types

Type Description

int Standard 32-bit integer

double

char ASCII character

string Standard string

boolean true or false

2

vector As in C++

null

job ● Represents a job, and also is used as the keyword to define
a new job

● To assign a job: job c = remote f()
● To assign the output from job c to int a: int a << c
● To do both at once: a << (c = remote f())
● Potential fields for each job: status, return value, slave id,

proc id, unique id
● Is pronounced /dʒoʊb/

Operators

● +
● -
● *
● /
● =
● %
● !
● ==
● !=
● <
● >
● >=
● <=
● // line comments
● ~: the “ready” operator, a 1 bit operator in every data type that signals if its assignment is

complete
● <<: lazy assignment operator, ie assign values asynchronously

Keywords

Keyword Description/usage

and Logical and

or Logical or

not Logical not

while Same as C

3

if Same as C

else Same as C

else if Same as C

void

return

master Contains “server” side code (written by the user) that issues
jobs to slave nodes

remote Denotes a job should be executed on a slave node (can only be
used within master block)

local Denotes a job should be executed on the same node in a
separate thread

cancel (alias: smite) Cancel a running job

Implementation
The compiler will be composed of two parts:

1) Master-Slave networking binary first written in a high level language (likely in C++ or
Python) and compiled into LLVM manually (not using our written compiler)

2) The compiler that compiles everything that is user-defined (jobs, code within master,
etc.) with ability to link to the master-slave networking binary when run

The compiler will create two files, master and slave, to be run on the respective machines.

Master will communicate with slaves through sockets. Master will send each slave a packet
according to the following schema:

job to run (ordinal) int

unique job id (to identify return value) int

length int

arguments (parsed according to signature) `length` many bytes

Slave will send a packet back when it is done according to the following schema:

unique job id (to identify return value) int

length int

4

return value `length` many bytes

Master will run user code, and when it blocks on data that is not ready yet, or if it encounters
operator ~ , it will poll the slave sockets and update user variables. (If this approach is
inadequate, then we will implement master with a separate thread that polls the sockets, but
then we would need synchronization for the user variables.)

Slave will run one thread that listens to the socket for incoming jobs, parse each job request,
and create a new thread for each job. Slave’s binary will include all the code for all the jobs.

Sample program (gcd) :
master {

int a = 100;

int b = 40;

int c << remote m3(a); // select a slave, tell it to create a thread of function m3 on

 // input a;

int d << remote m4(b); // this remote job runs concurrently with the job above

int result1 << remote gcd(c,d); // waits for both c and d to be ready

int result2 << remote gcd(a,b); // doesn’t run until c and d are ready because the line

 // above waits

job c = remote m3(a);

int output << c; // lazy assignment from job c

print(result1, “ “, result2); // prints “20 20”

if (~output) // if output (from job c) is ready

print(output); // only prints “300” if job c finished before the previous print

// statement above finished

else

cancel c; // we’re too impatient to wait for job c to finish, so kill it

}

job (int i, int j -> int) gcd { // function gcd takes int i and int j, returns int

if (i - j == 0)

 return i;

if (i > j)

return gcd(i-j, j); // function call, not thread creation

return gcd(i, j-i);

}

job (int i -> int) m4 {

 return i * 4;

}

job (int i -> int) m3 {

return i * 3;

}

