
MatCV - Proposal

Abhishek Walia (aw3011),
Anuraag Advani (ada2161),

Rahul Kapur (rk2749),
Shardendu Gautam (sg3391)

Contents
1 Introduction 2

1.1 Motivation . 2
1.2 Description . 2

2 Syntax 2
2.1 Data Types . 2
2.2 Operators . 3
2.3 Comments . 3
2.4 Keywords . 4
2.5 Library Functions . 4

3 Features 5

4 Demo Code 7

1

1 Introduction

1.1 Motivation
Our rationale behind MatCV is to come up with a syntax that makes matrix ma-
nipulation easier and more intuitive. Since many fields, such as computer vision and
machine learning use matrix operations extensively, our language introduces some
constructs that will allow beginners to get started easily. We named our language
MatCV as we will primarily be focussing on matrix operations that will be more
useful for computer vision related applications.

1.2 Description
MatCV will support primitive matrix operations such as transpose, inverse, deter-
minant etc. We introduce a few constructs that will make looping over pixels, rows
of a matrix, elements of a matrix, columns of a matrix as well as performing updates
in these loops intuitive and more readable. Concatenation of matrices, creating ma-
trices with zeros, read and display images, add and subtract pixels etc. are some
other features that will be supported by the language. In addition to these features,
we want to introduce another construct in which a programmer can create a matrix
of functions, say F:

F =
[
func1 func2
func3 func4

]
(1)

And then can apply these corresponding functions to elements of another matrix
with same dimensions:

A =
[
2 9
8 −1

]
(2)

F (A) =
[
func1(2) func2(9)
func3(8) func4(−1)

]
(3)

2 Syntax

2.1 Data Types
MatCV will support following data types:

int 64 bit integers (32 bit integers
will not be supported)

float 64 bit floating point numbers
boolean True or False
matrix m-by-n matrix which stores

int/float type data
string Stores sequence of UTF-8

characters

2

2.2 Operators
While considering operations between data types, we enforce some restrictions on
the data types that can be used with each other. The operators we support are
listed below:

Addition +

Addition is supported between
two matrices having the same
dimensions. Addition of a
matrix and scalar is not

supported.

Subtraction -

Subtraction is supported
between two matrices having
the same dimensions. Addition
of a matrix and scalar is not

supported.

Multiplication *

Multiplication of two
compatible matrices as well as
multiplying a matrix and a

scalar is supported.

Division /

Division of two compatible
matrices as well as dividing a

matrix and a scalar is
supported.

Transpose ’
Transpose of a matrix is

supported.

Assignment =
We assign an appropriate RHS
to an appropriate LHS where
type promotion is supported.

2.3 Comments
Multi - line and nested comments are supported:

/* This is a comment. Comments can be nested
and can be spread across multiple lines.
Comments have to be closed */

3

2.4 Keywords
MatCV will support following keywords:

row used to iterate over the rows
in a matrix

col used to iterate over the
columns in a matrix

ele identifier to access each
element in a matrix

sequentially
var declares a variable
const modifies a variable to be

immutable
if..else if..else Supports standard conditional

operations
for loops over given elements
break breaks out of loop
continue returns control flow to the

beginning of the loop
pixel is a 1x3 matrix that is used to

store RGB/YCrCb/HSV
values corresponding to a pixel

exit stops the program execution
and returns control to the host

environment

2.5 Library Functions
MatCV will provide some basic functions which can be extended to implement
complicated functionality:

zeros(m,n) returns a matrix containing
only zeros of dimensions m x n

eye(m, n) returns an identity matrix of
dimensions m x n

inv(a) computes the inverse of
matrix A. Matrix inverse can

also be computed by 1
A

det(A) returns the determinant of a
matrix in float type

rank(A) returns the rank of the matrix
readImage(imagePath) reads an image from the given

path
showImage(windowTitle,img) shows the image in a new

window with window title

Apart from these functions, we implement basic math functions such as sin(),
cos(), round(), pow(), abs(), ceil(), floor(), log() etc.

4

3 Features
The following are a few features MatCV supports:

1. You can declare a new matrix using the following syntax:

A = {1,2; 3,4};

You can also declare a matrix of zeros of size 4x2 using

A = zeros(4,2);

2. The print keyword can be used to print out information to the console. For
example:

A = {1,2; 3,4};
print(A[0][1]);

Will print 2 to the console. Row and column indexing starts from 0 in our
language.

3. Row size and column size are stored as attributes for a variable internally rep-
resented as a matrix. If A is a matrix of size 5x7 then: print(A.rowSize);
will print value 5 and print(A.colSize); will print the number of columns,
that is 7.

4. Primitive matrix operations such as addition, subtraction, multiplication, trans-
pose, inverse etc. are also provided by the language. You can invert the matrix
A using:

inverseOfA = 1/A;

Alternatively, we could have used the library function inv to find the inverse:

inverseOfA = inv(A);

5. The proposed language provides an intuitive way to iterate over all elements
of a matrix.
Keyword ele is used in the following fashion in order to iterate over all elements
of matrix A. If you had the following matrix: A = {1,2; 3,4};
Then the following code adds 1 to each element in the matrix:

ele e:A{
e = e + 1;
}

After the execution of above loop, the matrix A would look like:

5

A = {2,3; 4,5};

Inside the loop, element e contains attributes rowNum and colNum, that can
be used to find the position of the element in the matrix. For example,
if the current element in the loop corresponds to (3,2) in the matrix, then
print(e.rowNum) will print 3 to the console.
There are two more variations to the above loop. You can add var in front of
the variable name, using which you can change the value of the variable but
the change will not be reflected in the matrix:

A = {1, 2, 3; 4, 5, 6};
ele var e:A{

e = e + 3;
print(e);

}

The above example prints 4, 5, 6...9 but the matrix A will still remain {1, 2,
3; 4, 5, 6}.

The const keyword can be used instead of the var keyword, which will throw
an compilation error when e is changed in the loop. This makes sure that the
user does not change the matrix unintentionally:

A = {1, 2, 3; 4, 5, 6};
ele var e:A{

e = e + 3;
}

6. We can also iterate through the rows and columns easily. Keyword row is
used in the following fashion in order to iterate over all rows of matrix. This
example negates all the odd rows of A:

row r:A{
if(r.rowNum % 2 ==1) {

r = r * (-1);
}

}

We can similarly use the keyword column to access the columns of the matrix.

7. The iterators also have attributes, rowNum and columnNum which output the
row and column number at which the iterator is currently operating on.

6

4 Demo Code
The following code performs bi-cubic interpolation to zoom images in our language.
Consider a third degree polynomial:

f(x) = ax3 + bx2 + cx + d

Suppose you have values v0, v1, v2 and v3 at x=-1, x=0, x=1 and x=2 respectively,
we can estimate the value of a, b, c and d using:

a = −1
2v0 + 3

2v1 − 3
2v2 + 1

2v3
b = v0 − 5

2v1 + 2p2 − 1
2v3

c = −1
2v0 + 1

2v1
d = v1

The above estimates of a, b c and d can be used to perform cubic interpolation,
given by:

f(v0, v1, v2, v3, x) = (−1
2v0 + 3

2v1 − 3
2v2 + 1

2v3)x3 + (v0 − 5
2v1 + 2v2 − 1

2v3)x2

+ (−1
2v0 + 1

2v1)x + v1

In case of images, we use bi-cubic interpolation, which is essentially equivalent
to performing cubic interpolation in two dimensions. If we consider a 4X4 grid of
pixels, with each pixel having value vij, then we can perform bicubic interpolation
using:

g(x, y) = f(f(v00, v01, v02, v03, y), f(v10, v11, v12, v13, y), f(v20, v21, v22, v23, y),
f(v30, v31, v32, v33, y), x)

7

Demo code

void doCubicInterpolation(x, rowOfPixels)
{

pixelVal = {};

pixelVal = rowOfPixels[1] + 0.5 * x *(rowOfPixels[2] - rowOfPixels[0] +
x * (2.0 * rowOfPixels[0] - 5.0 * rowOfPixels[1] +
4.0 * rowOfPixels[2] - rowOfPixels[3] +
x * (3.0 * (rowOfPixels[1] - rowOfPixels[2]) +
rowOfPixels[3] - rowOfPixels[0])));

return pixelVal;
}

void doBicubicInterpolation(pixelSquare, double x, double y)
{

pixelAfterXInterPolation = {}; /*empty matrix*/

row const r:pixelSquare
{

pixelAfterInterPolation = {pixelAfterXInterpolation,
doCubicInterpolation(x, r)}; /*Append result to matrix*/

}

return doCubicInterpolation(y, pixelAfterXInterPolation);
}

function retrievePixel(in, x, y)
{

if (x < 0)
{

x = 0;
}
if (y < 0)
{

y = 0;
}
if (x >= in.width)
{

x = in.width - 1;
}
if (y >= in.height)

8

{
y = in.height - 1;

}

return in[x][y]; /* return the pixel at location x, y */
}

func performBicubicInterpolation(in, xScale, yScale)
{

width = scalingX * in.width;
height = scalingY * in.height;

out = whiteImage(width, height);
/* All pixel values will be 255,255,255 and

by default all images have 3 channels. */

xScale = 1 / xScale;
yScale = 1 / yScale;

pixel p:out /* for each pixel p in image out */
{

x = xScale * p.rowNum;
y = yScale * p.columNum;

pixelSquare =
{ retrievePixel(in, x - 1, y - 1), retrievePixel(in, x, y - 1),

retrievePixel(in, x + 1, y - 1), retrievePixel(in, x + 2, y - 1);

retrievePixel(in, x - 1, y), retrievePixel(in, x, y),
retrievePixel(in, x + 1, y), retrievePixel(in, x + 2, y);

retrievePixel(in, x - 1, y + 1), retrievePixel(in, x, y + 1),
retrievePixel(in, x + 1, y + 1), retrievePixel(in, x + 2, y + 1);

retrievePixel(in, x - 1, y + 2), retrievePixel(in, x, y + 2),
retrievePixel(in, x + 1, y + 2), retrievePixel(in, x + 2, y + 2)

};
/*pixelSquare is a 4X4 matrix of ’pixels’*/

p = doBicubicInterpolation(pixelSquare,
(((xScale * w) - x), ((yScale * h) - y));

}

return out;
}

9

func main()
{

inputImage = readImage("path_to_image/img.jpg");
/* Reads image from path*/

scalingX = 2;
scalingY = 1.5;

showImage("Input Image", inputImage);

outImage = performBicubicInterpolation(inputImage, scalingX, scalingY);

showImage("Output Image", outImage);
}

main();

10

	Introduction
	Motivation
	Description

	Syntax
	Data Types
	Operators
	Comments
	Keywords
	Library Functions

	Features
	Demo Code

