
GRAIL: A Graph-Construction Language

Aashima Arora (aa3917), Rose Sloan (rns2144),
Jiaxin Su (js4722), and Riva Tropp (rtt2114)

February 8, 2017

1 Introduction

GRAIL (Graph Rendering Articulate Innovation Language) offers an innova-
tive way to construct and manipulate graphs. The language provides built-in
data structures for nodes, edges, and graphs. Users can construct directed or
undirected graphs by adding nodes, edges and more. Furthermore, GRAIL
empowers users with various operators – edge operators, list operators, and
graph operators – to easily manipulate graphs. The goal of the language is to
make graph construction and manipulation easier as well as allow for users to
build complicated graphs through mathematical functions and simple objects,
providing a powerful tool for graph applications in mathematics and computer
science.

2 Programs in GRAIL

Graphs are a powerful method of representing and visually organizing data,
but very few languages provide a robust inbuilt framework for solving graph
problems. To prevent programmers from getting bogged down by the intrinsic
details of the implementation of the graph algorithms and help them focus more
on the problem at hand, GRAIL provides a much needed framework for han-
dling graphs. These graphs can be used to model a number of mathematical and
real world problems, including social network graphs, transportation networks,
utility graphs, document link graphs, packet flow, neural networks, dependency
modeling, and much more. In our language, nodes and edges will function as
primitive data types and we will allow for sufficient flexibility to create undi-
rected, directed and bidirectional graphs. The standard graph algorithms like
path-finding and shortest path algorithms will be implemented as a part of the
standard library.

1

3 Parts of GRAIL

Primitives:

• boolean

• char

• double

• int

• void

Objects:

• graph: a collection of undirected edges connecting primitives of a stated
type

• digraph: a graph with directed edges

• edge: connects two primitive nodes, which can be directed or undirected

• list: an ordered array containing any number of objects of the same data
type. Declared as type[].

• string: a character array

Integer and Double Operators:

+, -, /, *, %, +=, -=, /=, *=, <, >, <=, >=, ==, !=

Logical Operators:

&&, ||, !

Control Flow:

/* */ Comment
// Single line comment
; Signifies the end of a statement
if(...){} Conditional statements
[else if(...){}]
[else{}]
for(...){} Loops
while(...){}
int myfunc(int x){ Functions

return x;
}

2

Graph Operators:

graph1 + graph2 Returns a graph containing all the nodes and edges
in both graph1 and graph2

graph1 - graph2 Returns a graph containing the nodes of graph1
and all the edges in graph1 that do not appear in
graph2

graph1[x, y : conditionals] Returns a graph containing the nodes of graph1
and all the edges whose endpoints satisfy the con-
ditional

List Operators:

graph* Returns the list of nodes in the graph
list + item Adds the item as the last element of list, if they

are of the same type
list[x : conditionals] Returns a list containing only the elements that

satisfy the conditional

Edge Operators:

a− > b[(w)] Returns an edge (when use on primitives or strings)
b < −a [(w)] or graph of edges (when used on lists) in the specified
a−−b [(w)] direction. The objects a and b must be primitives of the

same type, both strings, or lists of the same length con-
taining the same data type. The three operators are func-
tionally equivalent in a graph, and in a digraph, the −−
operator returns two edges between a and b, one in each
direction. (w) is an optional argument and denotes the
weight of the edge. The default value when not provided
is 1.

.weight The weight of the specified edge. Can be used to access or
update the weight.

.to The first node connected to the specified edge (source node
in a digraph). Can be used to access or change the end-
point.

.from The second node connected to the specified edge (destina-
tion node in a digraph). Can be used to access or change
the endpoint.

3

Functions:

graph.display() Displays a visual representation of the graph
graph.sort(feature, [direction]) Sorts the edges in a graph by the designated feature (the

weight, the originating node, or the destination node). Di-
rection is optional and can be denotes by the keywords
“asc” or ”desc” for ascending and descending. If no direc-
tion is specified, ascending is the default.

size(obj) Takes in either a graph or list. Returns the number of
edges in a graph or number of elements in a list

to(node, [s, l]) Returns a list of edges going to the node. If provided
the optional second argument, this list contains only the
shortest such edge(s) if s is specified and the longest if l is.

from(node, [s,l]) Returns a list of edges from the node. If the second ar-
gument is provided, this list contains only the shortest or
longest edges, similar to how to works.

print() Can be used to print strings, edges, ints, or lists

Other:

• Grail.Math.INF: the largest supported integer value

4 A Sample Program

The following program implements Djikstra’s Algorithm for finding a shortest
path.

int[] getclosestpaths(graph g, int s){

g.sort(weight, asc);

int[] dist = [size(g)]; //initializes an array of ints of size size(g)

int[] prev= [size(g)];

boolean[] visited = [size(g)];

int inf = Grail.Math.INF;

for(int i = 0; i < size(dist); i++){

dist[i] = inf;

visited[i] = false;

}

dist[s] = 0;

for(int i = 0; i < size(g); i++){

next = closestNode(dist, visited);

visited[next] = true;

int[] neighbors = g.from(next, s);

4

for(int j = 0; j < size(neighbors); j++){

int n = neighbors[j];

int d = neighbors[j].weight + dist[next];

if(dist[n] > d){

dist[n] = d;

prev[n] = next;

}

}

}

return pred;

}

int closestNode(int[] dist, boolean[] visited){

int d = Grail.Math.INF;

int n;

for(int i = 0; i < size(dist); i++){

if(v[i] == false && dist[i] < d){

n = i;

d = dist[i];

}

}

return n;

}

//initialize a graph, add a node and an edge, and run closest paths algorithm

int graph g = {1->2,2->3,3->4};

g* += 5;

g += 4->5;

int[] allPaths = getClosestPaths(g,1);

5

