
Project Proposal for “C+ : More than C, Less than C++”
Alexander Stein (as5281) & Eric Johnson (efj2106)

● Effectively Implements all of C
○ Structures, Unions, file-I/O
○ C-like pointer, arrays, strings, references, functions
○ Includes most keywords

■ Auto, double, int, struct, break, else, long, switch, case, enum, typedef,
char, extern, return, union, const, float, short, unsigned, continue, for,
signed, void, default, goto, sizeof, volatile, do, if, static, while

● Also implements basic objects classes with inheritance and methods
○ Implements public, private, protected member keywords
○ Implements namespace
○ No overloading - want to avoid polymorphism as much as possible

because this a deep, deep rabbithole.
● Interesting programs: Dijkstra's Algorithm, Bellman-Ford Algorithm

○ Requires ability to produce data structures
○ Useful to represent complex structures like graphs, perhaps in a standard library

● Project idea: Graph Database
○ Implement lightweight high-efficiency graph database, stored in a data-structure

which resembles the database itself, enabling fast search, etc.
● Includes a profiler

○ Since this is in the spirit of C/C++, we want it to be fast. We will include a VERY
BASIC profiler to detail the speed which code executes on the (x86) CPU, and
what portions of the code are taking the most time.

● Test Driven Development
○ Again, since this is in the spirit of C/C++, the compiler will not do any garbage

collecting / checking for out of bounds errors. Our test-bench will look for such
things in addition to checking for basic functionality. Will use python unit-tests to
automatically run regressions on our language any time a change is made.

