
Margaret Mallernee mlm2299
Zachary Silber zs2266
Michael Tong mct2159
Richard Zhang rz2345
Joshua Zweig jmz2135

Programming Languages and Translators, Spring 2017

C% Language Reference Manual

Contents
1 Introduction 3

2 Types 3
2.1 Basic Data Types . 3

2.1.1 int . 3
2.1.2 char . 3
2.1.3 void . 3

2.2 Cryptographic types . 3
2.2.1 stone . 4
2.2.2 mint . 4
2.2.3 curve . 4
2.2.4 point . 4
2.2.5 access() . 4

2.3 Grouping . 5
2.3.1 pointer . 5
2.3.2 array . 5

3 Lexical Conventions 5
3.0.1 Keywords . 5
3.0.2 Comments . 5

4 Expressions 5
4.1 Primary Expressions . 5

4.1.1 Identifiers . 6
4.1.2 Literals . 6
4.1.3 NULL and ∼ . 6
4.1.4 (expression) . 6
4.1.5 lvalue Expressions . 6
4.1.6 primary − expression (comma separated expression arguments) 6
4.1.7 Other Expression Types . 6

4.2 Order of Evaluation . 7

5 Operators 7
5.1 Unary operators . 7

5.1.1 * expression . 7
5.1.2 & lvalue− expression . 7
5.1.3 - expression . 7
5.1.4 ! expression . 7

5.2 Exponential operator . 7
5.2.1 expression ** expression . 7

5.3 Multiplicative operators . 7
5.3.1 expression * expression . 8
5.3.2 expression / expression . 8
5.3.3 expression % expression . 8

5.4 Additive operators . 8
5.4.1 expression + expression . 8
5.4.2 expression - expression . 8

5.5 Relational operators . 8
5.5.1 expression < expression . 8
5.5.2 expression > expression . 8
5.5.3 expression >= expression . 8
5.5.4 expression <= expression . 8

5.6 Equality operators . 9
5.6.1 expression == expression . 9
5.6.2 expression != expression . 9
5.6.3 expression && expression . 9
5.6.4 expression || expression . 9

1

5.7 Assignment operator . 9
5.7.1 lvalue = expression . 9
5.7.2 lvalue =% expression . 9

5.8 Other . 9
5.8.1 expression, expression . 9

6 Statements 9
6.1 Statement Terminator & Blocks . 9
6.2 Control flow . 10

6.2.1 if, else . 10
6.2.2 Loops – while . 11
6.2.3 Loops – for . 11
6.2.4 Loops – do-while . 12
6.2.5 break . 12
6.2.6 continue . 12
6.2.7 Null . 13
6.2.8 return . 13

7 Program Structure 13
7.1 Functions . 13

7.1.1 Basic Functions . 13
7.1.2 Returning Expressions . 14
7.1.3 Void Functions . 14

7.2 Scope . 14
7.2.1 Lexical Scope . 14

8 File I/O 14
8.1 I/O Channels . 14
8.2 write() . 14
8.3 read() . 15

9 Appendix on cryptography 16
9.1 Modular arithmetic . 16
9.2 General setting . 16
9.3 Elliptic curves . 16

9.3.1 Background and definitions . 16
9.3.2 Addition formula . 17
9.3.3 Translation to cryptography . 17
9.3.4 Comparison with modular arithmetic . 17

2

1 Introduction
C% is a C like language purposed for applications of cryptography.The issue in the current state
of the art cryptography is not in the theory of Diffie Hellman, but rather in the cryptology of how
the protocol is implemented in specific applications and contexts. With this in mind, C% provides
built in types, operators and functionality that are designed to remove the burden of carrying
around large primes and keeping care over many modular calculations from the programmer.
The fore mentioned functionality is built into a familiar and powerful C like language specified in
this manual. Subsequently, in the specification of this language and development of this manual
many ideas and notions are purposed from the C Reference Manual 1 as well as Kernighan and
Ritchie’s The C Programming Language2.

2 Types
Each data type will be given a name and stored in a variable. These names are case-sensitive
and made up of alphanumeric characters (Including ’_’). Certain keywords used elsewhere in the
language will be reserved and unable to be used as variable names ("int", "if", "for"). (Cite K&R)

2.1 Basic Data Types
The basic data types listed will be implemented similarly to C.

2.1.1 int

An Int is a 4 byte representation of an integer. An Int ranges in value from -2,147,483,648 to
2,147,483,647. When an Int overflows in either direction behavior is not defined.
Ints can be declared with or without an initial value. If no initial value is given it will have an
undefined value until something is defined.

int x;
int x = 5;

2.1.2 char

A Char is a 1 byte representation of any ASCII character.
Chars are declared by giving a charcter surrounded by apostrophes. If no initial value is given it
will have an undefined value until something is defined.

char x1 = ’c’;
char x2 = ’\n’;

Note that our language has string literals which will allow character arrays to be used similarly
to Strings.

2.1.3 void

Void is reserved as a type to allow functions to return nothing.

2.2 Cryptographic types
These cryptographic types represent algebraic structures that are useful for the types of programs
C% is intended for. These types of programs often deal with number much larger than a reasonably
sized Integer type could handle. Thus, the building block of all of the cryptographic types is a
Stone, which will be implemented similarly to BigNum. All following types are declared with
stones in order to facilitate calculations on unbounded numbers.

1https://www.bell-labs.com/usr/dmr/www/cman.pdf
2Kernighan, Brian W., and Dennis M. Ritchie. The C Programming Language. Vol. 2. Englewood Cliffs:

Prentice-Hall, 1988.

3

2.2.1 stone

A Stone is the building block of most of the other cryptographic types. Stones are represented
as a linked list of integers and grow in size every time they run out of space to hold the current
number. Thus, a Stone is effectively an unbounded integer. Stone’s are used to represent the large
numbers and primes that our programs are intended to work with.
A Stone is defined as simply as an Integer and many of the same operators will apply to it.

stone x = 5;
stone x = 999999999999999;

2.2.2 mint

A ModInt is a data type that holds two things; a current value and an immutable modulus.
ModInt’s are used to represent a number under a certain modulus to be used for all of its calcu-
lations. Because it only makes sense to perform operations on ModInt’s with the same modulus
at any given time, behavior is undefined if a user attempts to apply binary operations on two
ModInt’s with differing moduli.
A ModInt will only be able to be defined with two Stones to enable to work with unbounded
integers. The value will be listed before the modulus in the declaration.

stone s1 = 3;
stone s2 = 7;
mint x = {s1, s2};

2.2.3 curve

Curves represent elliptic curves. Mathematically, the data of an elliptic curve is just its two
coefficients a and b (see Appendix). Thus, Curves are declared with two ModInts. There is not
any defined behavior if the two ModInt’s have different moduli.

mint x1 = {5, 7};
mint x2 = {3, 7};
curve c = {x1, x2};

Note that the numbers in the ModInt declarations will be interpreted as Stones and not Ints

2.2.4 point

Finally, Points are a fundamental data type for our language. Operations on Points are defined
through a given curve. Mathematically, the data of a point consists of its two coordinates and the
curve that it is on. In our language the two coordinates are represented with Stone’s and the Curve
will be given in the declaration as well. Note that operations will only have a defined behavior on
two Point’s under the same Curve.

point p = {c, 5, 6};
point pInf = {c, ~};

It is certainly possible that a point to may take on the value of "infinity" (see Appendix). In
this case the user can define a point with the ∼ keyword for infinity.

2.2.5 access()

Many cryptographic types are made up of multiple stored values. The access function gives the
user a method to read the individual values. For example, access of a ModInt would return an
array with both Stones. Similarly, access on a Curve would break it down all the way to Stones
and return a Stone array of length 4 (Curve is 2 ModInts which are 2 Stones each). Access of a
Point, following the same logic, would return a Stone array of length 6. The Stones are in the same
order as the type declarations.

mint m = {5, 7};
stone modulus = access(m)[1];

4

2.3 Grouping
Pointers and Arrays will both generally be handled as they are in C.

2.3.1 pointer

Pointers are stored with 8 bytes and represent a specific address in memory. Pointers can be
incremented or decremented to look at adjacent blocks of memory. Pointers will specifically be
useful in referencing Stone’s which can be arbitrarily large.
Pointers are declared by naming the type of data to be pointed to and using the dereferencing (*)
and referencing (&) unary operators.

int x = 7;
int* ptr = &x;

stone s = 17
stone* sPtr = &s;

2.3.2 array

Arrays can be used to store multiple instances of the same data type. An Array of any type can
be declared with any specific size. Use square brackets to declare.

int[] arr[10];
arr[0] = 2;
arr[1] = 4;

3 Lexical Conventions
3.0.1 Keywords

The following keywords are reserved in the language. They are enumerated here by type and are
each discusses in later sections.

• Types

– int

– char

– stone

– void

– mint

– curve

– point

• Statements

– if
– else
– while
– for
– do
– break
– continue
– return

• Miscellaneous

– NULL

– ∼

3.0.2 Comments

Single line comments are denoted by //. Any text on a line after a // will not be processed as
part of the program.
Multiline comments are opened with "(:" and closed with ":)".

4 Expressions

4.1 Primary Expressions
Primary expressions are in many cases the fundamental expression type that is operated on. This
section enumerates the class of primary expressions.

5

4.1.1 Identifiers

Identifiers are typed expressions that have been declared. For example in

int a = 5;
int *b = &a;
stone *c = {7, 12, a};

a, pointer to b and pointer to c are identifiers with types int, int pointer and stone pointer respec-
tively. The array defined by c is specified by a pointer to it’s first element. Additional identifiers
include functions. In this case, the expression’s type is that which the function returns.

4.1.2 Literals

Literals come in the form of numeric constants or string literals. If a constant fits into the size of
an int, it will be of type int. If not, it will automatically be of type stone, as will be the case if a
large prime is hard-coded (not recommended).
String literals will be expressed by any characters set between two double quotes. They will be of
type * char.
All literals are strictly rvalues.

4.1.3 NULL and ∼

NULL is a reserved keyword and is a pointer to the memory address #0x0.
Additionally, ∼ is how infinity will be expressed in the language. It being mathematically valid for
a point to have value of infinity per section 2.2.4, a point can be defined by point p = {c, ∼}
where c is a Curve.

4.1.4 (expression)

A parenthesized expression. The expressions type and value is exactly that of the expression bound
by the parentheses.

4.1.5 lvalue Expressions

There are exactly 3 forms of lvalues in this language. They are

1. identifier (non function pointers)

2. (lvalue)

3. *expression

All other expressions in this language are rvalues.

4.1.6 primary − expression (comma separated expression arguments)

This primary expression takes the form of a function call, with the specified primary−expression
being a function as specified in 4.1.1. Functions can but do not need to accept a sequence of
expressions, where each expressions type matches that specified in the function declaration. Each
parameter/expression is to be separated from the previous by a "," (comma).
The function being executed receives the address of each parameter specified, making C% a copy
by reference language.

4.1.7 Other Expression Types

Other expression types are built upon the Primary Expression types specified in the previous
section. The remaining expression types are operations over the general expression types and are
specified in section 5.

6

4.2 Order of Evaluation
There is exactly one operator on primary expressions, (). This operator has the highest priority in
the language and groups left to right. For example, in

f(g(x, y))

function f receives the result of the evaluation of g(x, y) as its parameter.
The unary operators have the next highest precedence in the language and group right to left.
Following, binary operators have the next highest priority, grouping left to right. The unary and
binary operators have precedence following the order that they are presented in section 5, with the
first operator presented having the highest precedence. The assignment operators have the next
highest level of precedence, with equal precedence amongst all operators.

5 Operators

5.1 Unary operators
These operators work exactly as they do in C.

5.1.1 * expression

The unary ∗ operator represents dereference: expression must be a pointer, and this returns the
object to which the expression points. Indeed, if the expression is a pointer to a type T , the type
of the result will be T .

5.1.2 & lvalue− expression

The result of the & operator is a pointer to the object referred to by the lvalue-expression. If the
type of lvalue− expression is T , the type of the result of this operation is pointer to T .

5.1.3 - expression

The result of the unary − operator is the negative of the expression. If expression is an integer
type, this is the typical additive inverse. If expression is of type point, this returns the inverse of
the point on the curve (as defined in 9.3.1).

5.1.4 ! expression

The unary ! operator is the logical negation, i.e. it takes an integer type (or a pointer type) and
returns (as an int) 0 if expression is non-zero and 1 otherwise.

5.2 Exponential operator
5.2.1 expression ** expression

The ∗∗ operator represents exponentiation and requires an integer type on both sides. Let the
numerical value of the right expression be n (if it is of type modint, it returns the value, not
the modulus). If n is non-negative, this finds the result of its value taken to the nth power (and
takes the remainder if the left expression is a modint). Also, in the case that the left expression
is a modint, this uses the squaring method for modular exponentiation to perform the operation
efficiently.
If n is negative, this is only defined when the left expression is a modint with a multiplicative
inverse, in which case this finds the inverse of the integer and takes that to the nth power (using
the same algorithm as above).

5.3 Multiplicative operators
The multiplicative operators ∗, /, and % group left-to-right.

7

5.3.1 expression * expression

Depending on the type of the expressions, this operator has very different uses.
If the expressions are both of type modint, this returns the product of the two numbers under
that modulus. The behavior is defined only when the two modints have the same modulus. If
only one expression has type modint, it returns the product of two numbers under that modulus.
Otherwise, it returns the typical numerical product of the two.
Now, if one expression has type point, then the other must be an integer type. In this case, if the
integer type has value n, it returns the result of the point added to itself n times (see §9 for further
explanation). No other type combinations are allowed.

5.3.2 expression / expression

The / operator only works when the expressions are of type int or stone. It implements integer
division, returning the type of the first expression.

5.3.3 expression % expression

The % operator only works when the expressions are of type int or stone, and returns the remainder
of the first expression when divided by the second, returning the type of the first expression.

5.4 Additive operators
The additive operators + and − group left-to-right.

5.4.1 expression + expression

The + operator returns the sum of the expressions. If the expressions are both integer or modint
types, conditions are analogous to those applying to ∗.
If the expressions are both of type point, this computes the elliptic-curve addition of the two points
(see §9), the behavior of which is only defined when the two points are relative to the same elliptic
curve. No other type combinations are allowed.

5.4.2 expression - expression

The binary − operator returns the difference of the expressions. It calculates exactly expression
+ (−expression) and is valid for all types for which this expression is valid.

5.5 Relational operators
5.5.1 expression < expression

5.5.2 expression > expression

5.5.3 expression >= expression

5.5.4 expression <= expression

These expressions return 0 or 1 based on whether the specific relation is false or true, respectively.
The operators are only defined when the expressions are of integer type or are a pointer, though
both expressions need not be of the same type. In the case of a pointer, it uses the memory location
that it is pointing to (interpreted as a number) to compare, and in the case of a modint it uses its
numerical value (without the modulus).
Note that the statement a < b < c does not seem to mean what it does, even though the operators
do group left-to-right.

8

5.6 Equality operators
5.6.1 expression == expression

5.6.2 expression != expression

These are analogous to the relational operators, except they have lower precedence. Note that this
implies that they implement structural equality, not physical equality.
Note that if the two expressions are of type modint, it does not check that the moduli are equal.
To do so, call access() (see 2.2.5). Also, == is defined for points – it checks that the curve they
are defined over is the same and that its x and y coordinates are equal as modints.

5.6.3 expression && expression

This is the logical AND operator. It returns 1 if both values are non zero and 0 otherwise.

5.6.4 expression || expression

This is the logical OR operator. It returns 0 if both arguments are 0, 1 otherwise.

5.7 Assignment operator
5.7.1 lvalue = expression

At the end of the evaluation, the value of the right operand is stored in the left operand. The value
of this operation is exactly the value of the left operand after the assignment has been completed.
The operand on the left of the assignment operator must be an lvalue.

5.7.2 lvalue =% expression

At the end of the assignment, lvalue will store the result of lvalue % expression.

5.8 Other
5.8.1 expression, expression

An expression of this format is equal to the value of the right-most expression. This is a unique
use of the "," as compared to the usages in separating parameters in a function call, as per section
4.1.6 and in type declarations, as per section 2.2.

6 Statements
Statements allow the user to control when expressions are executed in their programs.

6.1 Statement Terminator & Blocks
An expression is turned into an expression statement when it is terminated by a semicolon:

expression ;

Any expression becomes an expression statement when terminated by a semicolon, however
expression statements are only useful for their side effects, such as a calling functions or assigning
a value to a variable.

Statements may be grouped together into a compound statement or block using braces { }. Blocks
are used to group multiple statements together, and the resulting block is syntactically equivalent
to a single statement. Blocks are commonly seen in the definition of a function body, or with many
of the control flow statements defined in this section, such as for, while, and if. Unlike normal
statements, blocks do not need to be terminated by a semicolon. Blocks may be defined within
other blocks, and variables may be declared within any block. When a variable is declared within

9

a block, its scope is defined by that block, meaning that the variable is local to the block in which
it is defined.

6.2 Control flow
Control flow statements determine the order in which expressions are evaluated.

6.2.1 if, else

The keywords if and else are used to create conditional statements, which selectively execute
statements based on the truth of a given expression. The simplest constructions are

if (expression) statement1

if (expression) statement1 else statement2

In each of these expressions, statement1 is executed if (and only if) expression evaluates to
true (a non-zero value). If expression == 0, nothing happens as a result of the if statement unless
there is an else following statement1, in which case statement2 is executed instead of statement1.
For example,

if (n > 3)
x = 1;

else
x = 5;

If n > 3 evaluates to true, then the variable x is assigned the value 1, otherwise x is assigned the
value 5. Note that the expression n > 3 is not terminated by a semicolon, as it is not a statement,
while both x = 1 and x = 5 are semicolon terminated, in accordance with the expected syntax of
if statements listed above.

if statements can be nested and combined to test for multiple conditions:

if (n > 3)
x = 1;

else if (n == 3)
x = 3;

else
x = 5;

In nested statements such as these, each else matches the closest preceding else-less if. This
rule clarifies the ambiguity resulting from the fact that not every if must have an else. For
example, in

if (n > 3)
if (n < 10)

x = 1;
else

x = 5;

x will be assigned the value 5 if n is greater than 3 but not less than 10, i.e. the else is matched
with the most recent if which tests if n < 10. If you want to match the else with the first if
instead, you must use braces:

if (n > 3) {
if (n < 10)

x = 1;
}
else

x = 5;

10

6.2.2 Loops – while

The while statement is used to create a loop that runs so long as a given expression is true. The
formal syntax is:

while (expression)
statement

In a while statement, expression is evaluated first. If it evaluates to a non-zero value, statement
is executed and then expression is re-evaluated. This cycle continues until expression evaluates
to 0, or is false, at which point the while statement is over, and statement will not be executed
anymore. A while statement may also be exited using a break statement, as discussed in 5.2.5.

The following example computes the sum of the first 9 integers:

int sum = 0;
int n = 1;
while(n < 10) {

sum = sum + n;
n = n + 1;

}

6.2.3 Loops – for

The for statement has the syntax

for (expr1 ; expr2 ; expr3)
statement

and is equivalent to a while statement of the form

expr1;
while (expr2) {

statement
expr3;

}

except only in relation to continue, discussed in 5.2.6.

The three elements of a for loop are any expressions, and any or all of these expressions may
be omitted. Specifically, expr1 is executed once at the beginning of the loop, as an initialization
step; expr2 is a test expression that is executed before each iteration of the loop, such that if
expr2 evaluates to false the loop exits; and expr3 is called after each iteration of the loop body, as
an incremental step. Omission of expr1 or expr3 simply means that the loop runs without calling
those expressions. In the event that expr2 is omitted, the loop runs as if expr2 is true permanently,
as in an ’infinite’ loop (while(1)). This makes sense only if the loop is to be broken in some other
way, such as with a break or return statement. It is also important to note that, in accordance
with the behavior of the comma operator (see 5.9.1), the use of a comma separated expression for
expr2 will have the effect of only using the rightmost expression as a check for termination of the
loop. In order to check multiple conditions, you must combine the expressions using &&.

For example, the following loop will terminate when x reaches 10, not when y reaches 5:

int sum = 0;
for(int y = 0, x = 0; y < 5, x < 10; y = y + 1, x = x + 1)

sum = sum + x + y;

To actually check both conditions, replace expr2 with y < 5 && x < 10.

11

The for loop makes more sense than the while loop in cases where there are present and simple
initialization and incremental steps, as when you want to count the number of times the loop runs.

Our previous example is one of those cases:

int sum = 0;
for (int n = 1; n < 10; n = n + 1)

sum = sum + n;

6.2.4 Loops – do-while

The do-while statement is a loop that checks the condition for termination after running the loop
body. Unlike a while or for loop, the body of the loop will always be executed at least once,
regardless of the evaluation of the expression. The syntax is as follows:

do
statement

while (expression) ;

The do statement first executes statement, and then evaluates expression. If expression
evaluates to true, the cycle repeats, executing statement repeatedly until expression evaluates to
false (0). A do-while statement may also be exited using a break statement, as discussed in 5.2.5.

The following example also computes the sum of the first 9 integers:

int sum = 0;
int n = 1;
do {

sum = sum + n;
n = n + 1;

} while(n < 10);

6.2.5 break

A break statement is used to terminate a while, for, or do loop statement aside from the built in
termination condition. In the case of nested loops, break causes only the innermost loop to exit.
As a trivial example, the following loop simply increments i until it is a multiple of 3:

for (int i = 1; i <= 10; i = i + 1)
if (x % 3 == 0)

break;

6.2.6 continue

A continue statement is like a break statement, except that instead of exiting the entire loop,
the continue statement causes the loop to continue to the next iteration without running through
any remaining statements in the loop body. As with break, continue only affects the innermost
loop. Both do and while loops move directly to the test expression upon encountering a continue
statement, while a for loop passes control to the incremental expression (expr3 in 5.2.3). For
example, the following computes the sum of even numbers between 0 and 10:

int sum = 0;
for (int i = 0; i < 10; i = i + 1) {

if (x % 2 == 1)
continue;

else
sum = sum + i;

}

12

6.2.7 Null

The null statement is a single semicolon.

;

A null statement does nothing, and has no impact on your program, but be useful as the body
of a loop statement. For example, the following snippet sets x to the largest integer less than the
square root of a:

int x;
for (x = 2; x*x < a; x = x + 1)

;

6.2.8 return

The return statement is used to end the execution of the surrounding function body and return
control back to the calling function. The statement has the form

return value ;

where value is optional, and only valid if the function has a return type other than void. If the
function has a return type other than void, the function return type and the type of value must
match. In this case, it is also valid to omit value so long as the calling function does not require a
return value. It is generally not a good idea to omit value unless the function return type is void.

7 Program Structure
A Program is composed of variables and functions. Information can be shared between functions
by parameters, return values and global variables. The functions can occur in any order in the
source file, so long as a function’s prototype or definition is provided before or at the time of its use.

Programs require a main() function, and all other functions used within main() must be declared
before it, but may be defined afterwards, like in the following example:

int otherFunction();
int main()
{

declarations and statements
}
int otherFunction()
{

declarations and statements
}

How functions interact with the declarations and statements of other functions will be discussed
in the section 7.2.

7.1 Functions
7.1.1 Basic Functions

Functions have the following form:

return-type function-name (argument declarations)
{

declarations and statements
}

Functions need a return statement to return a value from the called function to its caller, with
the exception of functions that have void as the return-type (refer to section 2.1.3). If a return
type is not explicit, then it will be assumed to be an int [2].

13

7.1.2 Returning Expressions

Functions may return expressions as follows:

return expression ;

The expression will be converted to the function’s return type if they do not match.

7.1.3 Void Functions

Functions may return what appears to be the return-type void like in the following:

void function-name (argument declarations)
{

declarations and statements
}

In C%, a void function type indicates that the function does not return a value.

7.2 Scope
7.2.1 Lexical Scope

The lexical scope of names declared in external definitions (in a file, but not within a function
or other specified scope) extends from their definitions to the end of their respective file. Within
functions, the lexical scope of names is the body of the function itself [2].

main() { int a; ...}
//a falls out of scope

int mainCantSeeThis = 0;

void mainCantSeeThisEither(int a) {...}

In the above example, main() cannot access the int declared after it, nor can it access the void
mainCantSeeThisEither. In the same example, void mainCantSeeThisEither can access the
declared int mainCantSeeThis. Furthermore, a is not accessible outside of the scope of its defi-
nition.
It is illegal to redeclare a name within its context unless it is of the same type and class it previously
held [2].

8 File I/O

8.1 I/O Channels
C% supports three I/O channels: standard input (stdin), standard output (stdout), and standard
error (stderr). They are represented by the ints that describe their system file descriptors in
C%’s standard I/O functions. stdin is represented by 0, stdout is represented by 1, and stderr
is represented by 2.

8.2 write()

write directly outputs a program’s data by system call:

int write(int channel, char *buffer, int nbyte);

The write() function attempts to write nbytes from buffer to the channel associated with the file
descriptor passed as a parameter.
The function returns the number of bytes written to the file. A return value of -1 indicates an
error.

14

8.3 read()

read directly reads from the stdin by system call:

int read(char *buffer, int nbyte);

The read() function attempts to read nbytes from stdin, and places the characters read into
buffer. It removes carriage returns.
The function returns the number of bytes read. On carriage return, 0 is returned and on error it
returns -1.

15

9 Appendix on cryptography

9.1 Modular arithmetic
Most readers are likely familiar with modular arithmetic. It is the arithmetic of integers where
only the remainder of the number when divided by a fixed modulus is considered, so for example
one would take 3 ∗ 5 = 15 and take the remainder when divided by the modulus 7, which is 1.

Modular arithmetic lies at the heart of cryptography, which concerns itself with sending infor-
mation securely such that it cannot be read by any ordinary person unless they have access to
some other private information (typically referred to as a key). Indeed, the security of modern
cryptography protocols relies on various properties (or at least properties which are widely be-
lieved, but yet unproven) of the multiplication of integers when taken with a large (usually prime)
modulus. For example, many security protocols rely on the hardness of the discrete log problem:
given a prime modulus p and two integers α and β taken mod p, find an integer k for which αk ≡ β
(mod p).

9.2 General setting
Much of cryptography has historically been studied and implemented within this framework of
modular arithmetic. However, from a more abstract point of view, the core of what we are working
with here is a set of things (in this case, non-negative integers less than p) with a binary operation
(in this case, modular multiplication). In particular, the binary operation of modular multiplication
enjoys nice properties: it is associative (that is, (a · b) · c = a · (b · c)), it has an identity element
(there is some element e so that for every a, we have e · a = a · e = a), and it can be inverted (for
every a, there is some other element b so that a · b = b · a = e). Indeed, in abstract algebra, a set
equipped with a binary operation satisfying these properties is called a group, and cryptography
can be done with general groups instead of just on modular arithmetic. This ties nicely into our
implementation of elliptic curves.

9.3 Elliptic curves
Our language will offer tremendous support for a newer brand of cryptography where the group
in question consists of points lying on an object called an elliptic curve. How this works is highly
technical, and we aim to explain the intricacies here.

9.3.1 Background and definitions

A typical elliptic curve is an equation

y2 = x3 + ax+ b

where the variables in this equation take values in the real numbers R. So one can visualize
this as a set of points (x, y) in the plane for which this equation is true. Here is an example:

The curve y2 = x3 − x+ 1

The elliptic curve has the following remarkable property: if a line passes through two points
on the curve, then it passes through three points. Well, not exactly. The points of intersection are
counted with multiplicity, which practically means that if a line is tangent to a curve at a point,
then this intersection counts as two. Also, one might notice that in the picture, a vertical line only
intersects the curve in two points. Vertical lines are said to intersect the curve at infinity – this

16

sounds like cheating, but there is a (rather technical) way to have this make perfect sense (and our
implementation deals with this behind the scenes). Furthermore, notice that if a point P = (x, y)
is on an elliptic curve then (x,−y) is also on it, and we call this point −P .

Using these two facts, we have the following binary operation, called addition and denoted +:
it takes two points P and Q as input. It finds the unique line passing through both points (if
the points are the same, it takes the tangent line) and finds the third point on the line R. The
operation then returns −R. In short, P +Q = −R.

It takes some work to check, but it turns out that this addition + satisfies the properties stated
above in §9.2 so that the points on an elliptic curve form a group.

9.3.2 Addition formula

The following formula describes the addition law mentioned above. Let E be an elliptic curve
given by y2 = x3 + ax + b. Let P1 = (x1, y1) and P2 = (x2, y2) be points on E. The point
P1 + P2 = P3 = (x3, y3) is defined as follows:

x3 = m2 − x1 − x2
y3 = m(x1 − x3)− y1

where

m =

{
(y2 − y1)/(x2 − x1) if P1 6= P2

(3x21 + a)/(2y1) if P1 = P2.

and if the denominator of the relevant m is zero, then the sum is the point infinity and we write
P3 =∞.

9.3.3 Translation to cryptography

Now, in the above exposition we took elliptic curves defined over the real numbers, but it turns
out that this can be defined over any algebraic object known as a field (simplified, this is a set
with two binary operations + and × where both operations enjoy the nice properties of a group
and both operations distribute over each other, as they do in R).

Furthermore, the set of integers when taken with a prime modulus p, equipped with the typical
modular operations + and ×, is a field and is typically denoted Fp. Typically, elliptic curves in
cryptography are defined over this object Fp instead of R, so that a point a curve E is really an
equation

y2 ≡ x3 + ax+ b (mod p)

and the points on it are pairs of (modular) integers (x, y) for which this equation holds. Indeed,
even the addition law is the same, except the formula for m "changes" (we put "changes" in
quotation marks since this is really just a generalization of the above) to

m =

{
(y2 − y1)(x2 − x1)−1 if P1 6= P2

(3x21 + a)(2y1)
−1 if P1 = P2.

where x−1 denotes the multiplicative inverse of x in whatever field it is defined in. For example,
the multiplicative inverse of 5 with respect to the modulus 7 is 3, since 5 · 3 ≡ 1 (mod 7), so we
write 5−1 ≡ 3. As above, the sum of two points is ∞ if the "denominator", i.e. the term being
inverted, of the relevant m is equal to zero.

9.3.4 Comparison with modular arithmetic

The discussion in §9.2 motivates the analogy between the two cryptosystems. Indeed, while in
modular arithmetic we use integers mod p as building blocks and modular multiplication as an
operation relating these elements, in elliptic curve cryptography we use the points on an elliptic
curve as the elements and use the aforementioned addition law to relate these elements together.
With this analogy, one can translate many cryptographic protocols over the modular integers into
an exact protocol over an elliptic curve.

17

Indeed, recall the discrete log problem from §9.1. The elliptic curve analogy is this: given a
curve E and two points on it P and Q, can you find an integer k for which kP = Q? (Here kP
denotes P added to itself k times). The analogy should be becoming clear.

18

References
[1] Dennis M. Ritchie C Reference Manual. https://www.bell-labs.com/usr/dmr/www/cman.pdf

[2] Brian W. Kernighan and Dennis M. Ritchie The C Programming Language Volume 2. Engle-
wood Cliffs: Prentice-Hall, 1988.

[3] Travis Rothwell, James Youngman, et al. GNU C Reference Manual. Free Software Foundation,
2008.

19

	Introduction
	Types
	Basic Data Types
	int
	char
	void

	Cryptographic types
	stone
	mint
	curve
	point
	access()

	Grouping
	pointer
	array

	Lexical Conventions
	Keywords
	Comments

	Expressions
	Primary Expressions
	Identifiers
	Literals
	NULL and
	(expression)
	lvalue Expressions
	primary-expression (comma separated expression arguments)
	Other Expression Types

	Order of Evaluation

	Operators
	Unary operators
	* expression
	& lvalue-expression
	- expression
	! expression

	Exponential operator
	expression ** expression

	Multiplicative operators
	expression * expression
	expression / expression
	expression % expression

	Additive operators
	expression + expression
	expression - expression

	Relational operators
	expression < expression
	expression > expression
	expression >= expression
	expression <= expression

	Equality operators
	expression == expression
	expression != expression
	expression && expression
	expression || expression

	Assignment operator
	lvalue = expression
	lvalue =% expression

	Other
	expression, expression

	Statements
	Statement Terminator & Blocks
	Control flow
	if, else
	Loops – while
	Loops – for
	Loops – do-while
	break
	continue
	Null
	return

	Program Structure
	Functions
	Basic Functions
	Returning Expressions
	Void Functions

	Scope
	Lexical Scope

	File I/O
	I/O Channels
	write()
	read()

	Appendix on cryptography
	Modular arithmetic
	General setting
	Elliptic curves
	Background and definitions
	Addition formula
	Translation to cryptography
	Comparison with modular arithmetic

