
Martina Atabong | maa2247
 Charvinia Neblett | cdn2118

Samuel Nnodim | son2105
Catherine Wes | ciw2109

Sarina Xie | sx2166

The Warhol Language Reference Manual

Introduction

Warhol is a functional and imperative programming computer language based on both Java and Matlab.
Warhol’s types, syntax, and semantics are meant to help the user easily manipulate images. Images are
uploaded from files and translated into our main primitive type, matrices. Our primitive types are
designed to store pixel data. Warhol allows frequent writes, reads, and computes of pixels. Built-in
functions are provided to compute commonly used image algorithms while also giving users freedom to
implement functions.

The Warhol Library contains methods to facilitate declarative programming. Library functions provide
standard implementations of image editing task that can be performed on matrix types.

 Lexical Conventions

Tokens consists of identifiers, constants, separators, keywords, strings, and expression operators.
Comments and tabs are completely ignored. Blanks are new lines are used to separate tokens.

Comments

● Comments are denoted by opening and closing dollar signs.
○ Example 1: $ this is my code $
○ Example 2: $ this is also my code

 $ and this as well $

Identifiers
● Identifiers are a sequence of at least one character and a number. The first character of an

identifier must be alphabetic. Identifiers are case sensitive and cannot begin with an uppercase
letter. Longest string search is used to determine if an identifier is identical to a key word.

Keywords

int mat

bool if

else for

while break

continue sizeof

void null

fun char

Constants
● Integers

○ Integers constants are sequence of at least one digit.
● Characters

○ Character constants are one character enclosed with single quotes. Two
character character constants are allowed only if the first character is a backslash.
Characters are treated as integers.

■ Example: ‘\n’, ‘a’, ‘\t’, ‘0’
● Strings

○ Strings are implemented as a matrix of characters. The matrix is always
the exact length of the string. Termination of string is determined by bounds of the matrix
containing a string's characters.

Types

Matrix
● Matrices are 1, 2 and 3 dimensional arrays that can contain other objects defined in the

Warhol language.
Functions

● Functions are procedures that return void or methods that return other objects.
Integers

● Integer types are declared using keyword int
Characters

● Characters are chosen from ASCII set and declared using keyword char. Characters can
also be read as a number.

Boolean

● Booleans are declared using keyword bool. Booleans are stored and equivalent to integers
equal to 0 for false and greater than 0 for true.

Scope

● No variables of the same name, Ocaml style in the sense of immediate globalization (by
C definition, automatic)

Conversions

Characters and Integers
● Certain operators perform implicit conversions from one type to another such as

characters. Characters can be used the same as integers.

Expressions

Primary Expressions
Primary expressions are literals and names. Primary expressions involving subscripting and function calls
group left to right.

● An identifier is a primary expression. Its type is specified by its declaration (ex: matrix,
function)

● A decimal or character constant is a primary expression. Its type is int.
● A string is a primary expression. Its type is matrix of chars.
● (expression)

A parenthesized expression is a primary expression. Its type and value are identical to the
expression inside the parentheses.

● primary-expression [expression]
A primary expression followed by an expression in square brackets is a subscript and is a primary
expression.

● primary-expression (expression-list (optional))
A function call is a primary expression that is immediately followed by parentheses containing
the list of its arguments. It is of type “function returning ...” and the result of the function call is
of type “...”.
Any arguments of type char are converted to type int before the call.
Parameters are passed by reference.

Equality Operators
● Is-equal-to

○ expression_a == expression_b
● Is-not-equal-to

○ expression_a != expression_b

Relational Operators
The operators < , > , <=, and >= all yield 0 if the specified relation is false, and 1 if it is true.

● Is-less-than
○ expression_a < expression_b

● Is-greater-than

○ expression_a > expression_b
● Is-less-than-or-equal-to

○ expression_a <= expression_b
● Is-greater-than-or-equal-to

○ expression_a >= expression_b

Math Operators
If both operands are int or char, the result is int. If one is int or char and the other is mat, then the result is
mat. If both operands are mat, then the result is mat. No other combinations are allowed.

● Addition
○ expression_a + expression_b

■ The result is the sum of the expressions.

● Subtraction
○ expression_a - expression_b

■ The result is the difference of the expressions.

● Division
○ expression_a / expression_b

■ The binary / operator signifies division.

● Multiplication
○ expression_a * expression_b

■ The binary * operator signifies multiplication.

Unary Operators
Any expression with a unary operator is read from left to right.

● ! expression
○ This negation operator returns 1 if the value of the expression is 0, 0 if

the value of the expression is non-zero. The type of the result is bool. This operator is
only applicable to bools.

● - expression
○ The result is the negative of the expression. This operator is only

applicable to ints and chars.
● sizeof expression

○ Returns the size (bytes) of the operand.

Logical Operators
● expression && expression

○ The && (“and”) operator returns 1 if both its operands are non-zero.
Otherwise, it returns 0.

● expression || expression
○ The || (“or”) operator returns 1 if either of its operands is non-zero, and 0

otherwise.

Assignment Operator
● value = expression

○ The value of the expression replaces that of the object referred to by the
value.

Declaration

Declarations in Warhol are used to establish particular types.

Declaration

● In Warhol there is one declaration max, per semicolon.

mat name = [x1 x2 x3; y1 y2 y3; z1 z2 z3];

● The scope of declaration binds the declaration to some declarator for later function
application.

Declarators
● declarator() is a function declaration that applies a builtin function to the expression

declaration statement

For example, mat in Warhol, is an example of how type declaration in Warhol is done via
declarators in the declaration statement.

Statements

Expressions

● In Warhol there is one expression statement max, per semicolon.

Expression statements look like:

form expression ;

Compound Statement

● In Warhol, a compound statement consists of a list of statements where each statement
ends in a semicolon.

Compound statements look like:

expression1 ; expression2 ; expression3 ;

Conditional Statement

● In Warhol, a conditional statement consists of a conditional keyword, such as if, followed
by an expression, in parentheses and an expression statement.

Conditional statements look like:

keyword (expression) statement;

Break

● The break identifier terminates loops so it must be used in the context of a loop.

Break statements look like:
- break;

Continue

● The continue identifier skips one iteration of a loop so it must be used in the context of a
loop.

Continue statements look like:
- continue;

Return

● The return statement returns the result of a function to the caller of the function.

Return statements look like:
- return;

Function

Declaration
type fun nameOfFunction (Declarator1, Declarator2, …) {

<statement1>
<statement 2>
…
return result;

}
Parameters

Default scope for any variable is local. If declared in the parameters of a function, the scope is the
length of the function. All parameters are passed by value, leaving the original object passed into the
function unchanged.

Built-in Functions

Upload
Takes in a image file format and returns an image object
Input

- string - name of the image file
Return Type

- Image - the image uploaded
Write

Takes an image object and writes it to a file
Input

- Image - file to be written to file
- String - name of file

Return Type
- Void - the function returns void

Print
Takes an image object and displays
Input

- Image - file to be written to file
Return Type

- Void - the function returns void

Standard Library

RevX()
Takes a matrix and reverses the given matrix along the columns
Input

- Mat - the original matrix
Return Type

- Mat - the same matrix with the columns reversed
RevY()

Takes a matrix and reverses the given matrix along the rows
Input

- Mat - the original matrix
Return Type

- Mat - the same matrix with the rows reversed
Concat()

Takes a matrix or image and concatenates the second matrix to the intended row/column. Types
concatenating must match

Input
- Mat/image - the original matrix or image
- Mat/image - the matrix or image to be concatenated
- Direction - enumeration type of LEFT, BOTTOM, RIGHT, TOP, to

choose where to concatenate
Return Type

- Mat - new concatenated matrices in one
Filter()

Takes an image and filters the image using a convolution matrix
Input

- Image - the image to be filtered
- Mat - the convolution matrix

Return Type
- Image - the filtered copy of the image

Blur()
Takes an image and blurs the image using basic sharpen matrix multiplication
Input

- Image - the image to be sharpened
Return Type

- Image - the blurred copy of the image
Sharpen()

Takes an image and sharpens the image using basic sharpen matrix multiplication
Input

- Image - the image to be sharpened
Return Type

- Image - the sharpened copy of the image

