
Pseudo: Language Reference Manual

Kristy Choi (eyc2120), Kevin Lin (kl2806),
Benjamin Low (bkl2115), Dennis Wei (dw2654), Raymond Xu (rx2125)

February 22, 2017

Contents

1 Introduction 2

2 Lexical Conventions 3

2.1 Comments . 3

2.2 Identifiers . 3

2.3 Keywords . 3

2.4 Constants . 4

2.4.1 Numerical Constants . 4

2.4.2 Escape Character Constants 4

2.5 Strings . 4

3 Types 4

3.1 Primitive Data Types . 4

3.1.1 num . 4

3.1.2 bool . 5

3.1.3 string . 5

3.2 Collections . 5

3.2.1 Lists . 5

3.2.2 Maps . 6

3.3 Objects . 6

3.3.1 Objects . 6

3.4 Type Inference . 7

3.5 Automatic Initialization . 8

1

4 Operators and Expressions 8

4.1 Assignment . 8

4.1.1 Assignment . 8

4.2 Operators . 9

4.2.1 Arithmetic Operators . 9

4.2.2 Logical Operators . 9

4.2.3 String Operators . 9

4.2.4 Relational Operators . 10

4.2.5 Collection Operators . 10

4.3 Declarations . 13

5 Control Flow 13

5.1 Conditionals . 13

5.2 For . 13

5.3 While . 13

6 Scope 14

7 Functions 14

7.1 Declarations . 14

7.2 Usage . 15

8 Additional Examples 15

1 Introduction

Algorithmic thinking and analysis serve as the cornerstone of all application areas in
computer science, equipping students and professionals alike with the ability to tackle
challenging problems efficiently and effectively.

Traditional high-level programming languages such as Java and C++ are often
unnecessarily verbose for algorithmic definition. Bulky language design complicates
programmatic implementations of ubiquitous algorithms such as the graph-traversing
depth-first search or shortest paths, forcing users to set up classes and
infrastructure to implement simple ideas in code.

Our language will be perfect for rapidly prototyping algorithms, verifying the behavior
of algorithms on given inputs, and for educational purposes, as the syntax is inspired
by the easily-readable pseudocode from CLRS, the classic textbook for algorithmic
analysis. Following an imperative programming paradigm and using type inference
with intuitive keywords to maximize human readability, we hope to facilitate designing
and implementing algorithms for all users.

2

2 Lexical Conventions

2.1 Comments

Single line comments begin with //. Multi-line comments begin with /* and end with
*/. Comments do not nest.

2.2 Identifiers

Identifiers, or names, are used to describe the various components of Pseudo. They
are composed of a sequence of alphanumeric characters and/or the character , where
the first character must be alphabetic. Identifiers are case sensitive - uppercase and
lowercase characters are considered distinct.

/* Valid identifiers */

my_int = 10

flag = True

/* Invalid identifiers */

_int = 10

1thousand = 1000

2.3 Keywords

The list of identifiers reserved as keywords are below:

and for or
assert sort return
break if None
continue True swap
def in union
else is while
elseif not
False print

We provide some examples of how these keywords can be used:

a = 2

b = 4

assert a == b // Exception

assert (a == b) == False // True

2 not in [1, 2, 3] // False

We will provide more examples specific to each keyword in later sections.

3

2.4 Constants

Pseudo allows for several types of constants.

2.4.1 Numerical Constants

Numerical constants consist of a sequence of digits from 0-9, including a hyphen (-)
for negative numbers and a decimal point (.) for floating point numbers. Pseudo only
supports decimal numbers - number systems in other bases (e.g. binary, hexadecimal)
are not allowed.

2.4.2 Escape Character Constants

Escape character constants consist of two characters - a slash (\), and another
character that designates the type of escape character it is. Below is a list of all
the escape character constants available in Pseudo and their definitions:

\n - newline character
\t - tab character
\r - return character
\” - double-quote character
\\- backslash character

2.5 Strings

Strings are represented by a sequence of characters surrounded by double quotes (”)
and are immutable.

3 Types

3.1 Primitive Data Types

There are three primitives in pseudo: num, bool, and string.

3.1.1 num

num represents both integers and floating point numbers. num types are 32-bits and
follow IEEE 754 standard. Because there is no distinguishing factor between integers
and floating point numbers, it is acceptable to declare numerics in a variety of ways:

4

x = 3

y = 3.0

Because of this normalization, boolean operations ignore notation as well.

x = 3

y = 3.0

x == y // True

3.1.2 bool

bool represents a simple boolean value, either True or False. They can be declared
as follows:

boolean_one = True

boolean_two = False

3.1.3 string

string is a primitive data type in Pseudo. They are denoted by enclosing the desired
text in double quotes. The string datatype supports all ASCII characters. To insert
the " character in a string, use \" to avoid ending the string.

str_one = "This is a \"string\"" // This is a "string"

str_two = "this Is %$# another %!@) \nstring"

3.2 Collections

There are two types of collections that are built into Pseudo: Lists and Maps. Both
are strongly typed. Collections are typically named with a single uppercase letter
such as A, G, and M, but this is only a recommended convention.

3.2.1 Lists

A List is represented by a sequence of comma-separated elements is enclosed in
two square brackets []. Elements can be accessed by their positions in the list,
beginning with the zero index. The List is a mutable data structure, which means
that it supports functions to append, remove, or update its values. Lists can contain
primitives or objects, but not a mix of both. Within a List of primitives, each element
must be of the same type – for example, a List may not hold a collection of both num

and string elements. Within a List of objects, all elements must be of the same
type.

A = [1, 2, 3, 4, 5]

A[0] = 4 // [4, 2, 3, 4, 5]

G.nodes = [a, b, c] // a list of nodes

a.adj = [b, c] // an adjacency list of neighboring nodes

5

3.2.2 Maps

Maps represent the traditional hash map that maps unique keys to values. They are
represented by two curly braces {}, where each key is separated from its value by a
colon :, and each key-value pair is separated by commas. All of the keys in a map
must be of the same type as each other, and all of the values in a map must be of the
same type as each other. Entries to Maps can be added by inserting new keys with
their respective values using the square brackets [] for indexing the Map.

M = {"one": 1, "two": 2, "three": 3}

M["one"] // 1

M["four"] = 4 // assignment

// M = {"one": 1, "two": 2, "three": 3, "four": 4}

Entries in a Map can be overwritten by assigning a new value to an existing key.
This data structure also supports deletion of (key, value) entries in addition to
appending and access. The key values in the Map are not stored in any particular
order.

3.3 Objects

Objects in Pseudo represent containers of data types. They can be used to represent
more complicated structures such as nodes in a graph.

3.3.1 Objects

Objects are collections of data types that are accessed via the dot (.) operator.
Consider a Person object which has the fields name and age. One can create and set
the fields of such an object with the following code:

person.name = "John Doe"

person.age = 42

These values can be referenced later in the program as well. For example, the
expressions

person.name == "John Doe"

person.age + 5

would return True and 47 respectively.

In addition to containing primitive data types, objects can also contain other objects.
Consider the following declaration of a family:

6

family.size = 4

family.surname = "Doe"

family.mom.name = "Jane Doe"

family.mom.age = 43

family.dad.name = "John Doe"

family.dad.age = 42

child_one.name = "Tim Doe"

child_one.age = 12

child_two.name = "Tina Doe"

child_two.age = 9

family.children = [child_one, child_two]

Within this declaration of a Family object named family, we can see that it contains
several data types. There are primitive fields size and surname of type num and
string. However, there are also Person sub-objects of mom and dad each with fields
of name and age. Lastly, there is even a list of Person objects children containing
child one and child two. All types are inferred, with family having field types
int, string, object, object, and List<object>.

Objects do not have in-built member functions. Functions on objects must be defined
as a static function independent of the object itself.

3.4 Type Inference

Pseudo contains a robust type inference system. Given an expression, it will be
determined at compile time what type each variable is an instance of. For example,
given the expression

num_example = 3

it will be inferred that num example is of type num.

This principle extends to more advanced data types as well. For example, the
expressions

sample_list = [1, 2, 3, 4]

sample_map = {"one": 1, "two": 2}

will infer sample list and sample map to be of types List<num> and Map<string:num>

respectively.

Lastly, this type inference applies to objects as well. For example, consider the
following sample program:

7

sample_object.name = "my name"

sample_object.value = 0

sample object will be inferred to be of a type object with two fields, name which is
of type string and value which is of type num.

Type inference applies to more complex objects that contain object fields as well.
Consider the following program:

sample_object.name = "my name"

sample_object.sub_object.sub_value = 3

sample_object.sub_object.sub_list = [1, 2, 3]

sample object is inferred to be an object with two fields, name of type string

and sub object of type object. Furthermore, sub object is inferred to have fields
sub value of type num and sub list of type List<num>.

If an object cannot be inferred when needed, a compilation error will occur.

print a // Compilation Error: Ambiguous Type

3.5 Automatic Initialization

All variables are automatically initialized to default values.

Primitives are automatically initialized to a default value depending on their type.
Collections are automatically initialized to their empty states. Objects’ fields are
automatically initialized recursively to their default values.

Type Default Value
num 0
bool False

string None
List []
Map {}

4 Operators and Expressions

4.1 Assignment

4.1.1 Assignment

The = operator is used to assign the value of an expression to an identifier.

8

A = [1, 2, 3]

With type inference, the variable A is automatically declared without having to
declare the type.

Assignment is right associative, allowing for assignment chaining.

a = b = 10 // Set both a and b to 10

4.2 Operators

4.2.1 Arithmetic Operators

The arithmetic operators consist of +, - ,*, / and %. The order of precedence from
highest to lowest is the unary - followed by the binary * and / followed by the binary
+ and -.

4.2.2 Logical Operators

The logical operators consist of the keywords and, or and not. The negation operator
not keyword inverts true to false and vice versa. The logical operators can only be
applied to boolean operands. The and keyword joins two boolean expressions and
evaluates to true when both are true. The or keyword joins two boolean expressions
and evaluates to true when both are true.

4.2.3 String Operators

String access is denoted by square brackets enclosing an integer in the range of the
length string. It returns the String indexed by the integer.

a = "Hello world!"

print a[0] // prints "H"

String concatenation is denoted by the binary + operator.

a = "Hello"

b = " world!"

c = a + b // "Hello world!"

a = True

b = False

print not a // False

print a and b // False

print a or b // True

9

4.2.4 Relational Operators

Relational operators consist of >, <, >=, <=, == and != which have the same
precedence. For primitive types, the equality comparison compares by value. ==

compare structurally while the is keyword compares physically. The is keyword is
valid for simple objects, collections of primitives, and collections of simple objects.
The == and != operators are valid for primitives and lists containing primitives but
not for objects or lists containing objects.

a = 1

b = 1

print a == b // True

print a is b // True

c.adj = b

b.adj = c

print b is c // False

print c is c // True

print b == c // Error

A = [1, 2, 3]

B = [1, 2, 3]

print A == B // True

Unfortunately, objects cannot be compared, and attempts to do so will result in a
compilation error.

john.name = "John Doe"

john.age = 42

jane.name = "Jane Doe"

jane.age = 45

john == jane // Compiler Error: Object Comparison

However, the is command can be used with objects.

The following chart explains what can be compared with the == and is operators.

Type == is

primitive X X
primitive collection X X
object X X
object collection X X

4.2.5 Collection Operators

Collection operators allow for convenient manipulation of the Collection data types.

10

Lists

Lists support the following operations:

Length - returns the length of the list

a = [4, 5, 6]

a.length // 3

Access - returns the element at an index

a = [4, 5, 6]

a[0] // 4

Update - updates the element at an index

a = [4, 5, 6]

a[1] = 7

a[1] // 7

Insertion - inserts an element at an index and return it

a = [4, 5, 6]

a.insert(1, 8)

// a == [4, 8, 5, 6]

Removal - removes the element at an index and return it

a = [4, 5, 6]

a.remove(0) // 4

// a == [5, 6]

Push/Enqueue - inserts an element at the end of the list and return it

a = [4, 5, 6]

a.push(7) // 7

// a == [4, 5, 6, 7]

a.enqueue(8) // 8

// a == [4, 5, 6, 7, 8]

Pop - removes the last element and returns it

a = [4, 5, 6]

a.pop() // 6

// a == [4, 5]

11

Dequeue - removes the first element and returns it

a = [4, 5, 6]

a.dequeue() // 4

// a == [5, 6]

For each e in L - iterate over a list

a = [4, 5, 6]

for elem in L:

print a

// 4

// 5

// 6

Maps

Maps support the following operations:

Contains - returns whether or not a key is in the list

m = {"foo": 2, "bar": 3}

"foo" in m // True

Lookup - looks up the associated value for a key

m = {"foo": 2, "bar": 3}

m["foo"] // 2

Update - sets a new value for a key, overwriting its old value if it had one

m = {"foo": 2, "bar": 3}

m["foo"] = 5

Removal - deletes a key from the map

m = {"foo": 2, "bar": 3}

m.remove("foo")

m["foo"] // Exception

Iteration - iterate over each key in the map

m = {"foo": 2, "bar": 3}

for k in m:

print k

// foo

// bar

12

4.3 Declarations

5 Control Flow

All statements in the language are executed in sequence.

5.1 Conditionals

The if statement is used for conditional execution of a series of expressions. Each
statement is separated by a colon (:) to signal the end of a clause. The elseif

keyword catches conditions that are skipped by if, and the else keyword catches all
other cases.

if boolean-expression:

expression

elseif boolean-expression:

expression

else:

expression

5.2 For

The for statement is used to iterate over the elements in a sequence (or some other
iterable), allowing the user to repeatedly execute statements nested inside the loop.
The to keyword can be used to specify a range to iterate over a starting and ending
num type. The starting num is inclusive and the ending num is not inclusive.

for expression in expression_list:

expression

for i = 0 to 10: // prints 0 to 9

print i

The break keyword can be used to exit early, as is the case for the while loop. The
continue keyword is used to go to the end of the loop.

5.3 While

The while statement is another way to continuously execute a statement so long as
the value of the boolean expression evaluates to True. This expression is evaluated
prior to execution of the nested statement.

while boolean-expression:

statement

13

6 Scope

The lexical scope of variables follows from the structure of the program. Variables
declared at the outermost level extends from their definition through the end of the
file in which they appear. Function definitions, conditionals and loops create their
own local scope. If a variable is a defined in a higher scope then assignment to that
variable changes that variable.

a = 10

if True:

a = 20

b = 20

print a // 20

print b // error

7 Functions

7.1 Declarations

Functions are declared with the def keyword, the name of the function, and the
parameters being passed into the function surrounded by parentheses, followed by
a colon. The naming convention follows that of identifiers - it must begin with an
alphabetic character and may consist of any combination of alphanumeric characters
and . If there are multiple parameters, they are separated by commas.

def ADD(a, b):

return a + b

Return values and parameters of the function will determined based on type inference,
whether from a previous initialization/usage of the variable, or from the operations
performed on it in the function.

def INCREMENT(a):

return a + 1 // returns num a + 1

The scope of a function is determined by its indentation. All lines that are one tab
greater than the function declaration’s indentation are considered part of the function.
Pseudo knows when a function’s scope has ended once it finds a line with the same
indentation as the function declaration or a line that has less tabs.

14

7.2 Usage

User-defined functions may be called simply by providing the function name and the
required parameters.

a = 3

b = 2

print ADD(3, 2)

In-built functions for a data type may be called by providing the variable of that data
type, a period, and then the function name and its required parameters.

a.append(2) // a is a List

Parameters are passed into functions by reference. This means that any non-primitive
type variable passed into a function (e.g Lists, Maps, Objects) can have its contents
modified even outside the function’s scope. For example:

a = [1,2,3,4,5]

def modify(a):

a[0] = 0

return a

modify(a) // [0,2,3,4,5]

Primitives cannot be passed by reference. A primitive variable declared outside a
function will always retain its value unless reassigned within its scope. Any function
that the variable is passed into will not modify the value of the original variable.

8 Additional Examples

def BFS-CONNECTIVITY(G, s, t):

for u in s.adj:

Q.push(u)

while Q.length > 0:

v = Q.pop()

if v is t:

return True

visited.append(v)

for u in v.adj:

if u not in visited:

Q.push(u)

15

return False

def MAIN():

a.adj = [b, c]

b.adj = [a, d]

c.adj = [a, b]

d.adj = [b]

G = [a, b, c, d]

print BFS-CONNECTIVITY(G, a, d)

$ pseudo bfs.clrs

$./bfs

>> true

16

	Introduction
	Lexical Conventions
	Comments
	Identifiers
	Keywords
	Constants
	Numerical Constants
	Escape Character Constants

	Strings

	Types
	Primitive Data Types
	num
	bool
	string

	Collections
	Lists
	Maps

	Objects
	Objects

	Type Inference
	Automatic Initialization

	Operators and Expressions
	Assignment
	Assignment

	Operators
	Arithmetic Operators
	Logical Operators
	String Operators
	Relational Operators
	Collection Operators

	Declarations

	Control Flow
	Conditionals
	For
	While

	Scope
	Functions
	Declarations
	Usage

	Additional Examples

