
Language Reference Manual

Music Mike

Harvey Wu, Kaitlin Pet, Lakshmi Bodapati, Husam Abdul-Kafi

February 23, 2017

Contents

1 Introduction 3

2 Types, Operators, and Expressions 4

2.1 Types and Literals . 4

2.1.1 Basic Types . 4

2.1.2 Derived Types . 5

2.1.3 Expressions . 5

2.2 Operators . 7

2.2.1 Arithmetic Operators . 7

2.2.2 Logical and Comparison Operators 7

2.2.3 Pitch Operators . 7

2.2.4 Rhythm Operators . 7

2.2.5 List Operators . 8

3 Control Flow 9

3.1 Expressions . 9

3.2 If-Then-Else . 9

3.3 For Loop . 9

4 Functions and Program Structure 10

4.1 Functions . 10

4.1.1 Built-in Functions . 10

4.2 Comments . 10

4.3 Scoping . 11

5 Standard Library Functions 12

5.1 List Manipulation . 12

5.1.1 map . 12

5.2 Tune Manipulation . 12

5.2.1 wrap . 12

1

5.2.2 maptune . 12

5.2.3 concact . 12

5.3 Timeline Manipulation . 13

5.3.1 synth . 13

6 User-Defined Types 14

6.1 General Information . 14

6.2 Standard Library Types . 14

6.2.1 Tune . 14

6.2.2 Timeline . 15

2

1. Introduction

This manual describes the Music-Mike language as submitted to Professor Stephen Edwards,

for completion of the Spring 2017 edition of the Programming Languages and Translators

class at Columbia University. Care has been taken to make it a reliable and informative

guide to the language.

Music-Mike is a semi-functional, music programming language, inspired by OCaml and

Note-Hashtag. The central ethos behind Music-Mike is creating music through repetition and

manipulation of a collection of simple musical units. Its design follows these core principles:

- Every expression returns something.

- All objects of non-user-defined type are immutable.

- Functions are (almost) first-class citizens.

3

2. Types, Operators, and Expressions

2.1 Types and Literals

All basic types are immutable in Music-Mike. User defined types are mutable.

2.1.1 Basic Types

- Unit (unit)

The only value that unit can take is (). Similar to Unit in OCaml.

- Boolean (bool)

Takes two values: true or false.

- Integer (int)

A 32-bit signed integer.

- Float (float)

A 64-bit floating point number. Must contain a decimal point and either an integer or

fractional component. The missing component is treated as a zero.

Examples: 5. 6.43 3.1415 .42

- Pitch (pitch)

Composed of two integers: a note value and an octave value.

- String (string)

A simple string enclosed by double quotations not spanning multiple lines.

4

2.1.2 Derived Types

- Tuple Tuple, denoted by << x, y>> where x and y are objects of any type

- List

Constructed by enclosing a list of white-space separated elements with square brackets.

All elements must be of the same type.

Example: x = [1 3 5 7] y = [1.0 2.4 3.0 4.0]

- Pitch List

Constructed by enclosing a list of white-space separated pitches with parentheses. Note

that the octave may not need be specified as each mode contains a default octave. The

contents of the list are actually chords, which will be discussed later.

Example: twinkle = (1 1 5 5 6 6 5)

Example: complicated = (5 ˆ5 v6 5 1b 7 5# 5 6 5 2 1b3 0)

- Rhythm List

Denotes the length of each pitch/chord at the corresponding position in the pitch list.

Constructed by enclosing a list of white-space separated floats or characters with curly

braces. Time in this schema is represented by the implicit unit beat which will be either

hard-coded or set by user. If a float f is used to represent this length, the absolute

length corresponds to f * (beat length). One can also use the keyword characters q, w,

h, t, e, s which correspond to the f = 1.0, 4.0, 2.0, 0.33, 0.5, and 0.25 respectively.

Example: { 2.0 q q h }

- Chord

A structure containing multiple notes separated by /. These represent multiple notes

being played at the same time. All elements of a pitch list are chords to maintain type

consistency.

2.1.3 Expressions

An expression could be:

1. A literal constant:

c

2. An arithmetic operation:

e1 op e2

5

3. A unary prefix or postfix operation:

op e

e op

4. A conditional branch must have an else attached to it

if e1 then e2 else e3

5. For loop:

for element in list { e }

6. Variable declarations and assignment:

x = e1

7. Variables:

x

8. Single-expression function declarations:

fun fname arg1 . . . argn = e

9. Multi-expression function declarations. The last expression (en) is the value of the

function when called:

fun fname arg1 . . . argn = {e1; e2; . . . en−1; en}

10. Function call:

fname e1 . . . en

11. Sequenced expressions:

e1; e2; . . . en−1; en

12. A white-space separated list of integers or floats:

[int1 . . . intn]

[float1 . . . f loatn]

13. A list of pitches

(pitch1 . . . pitchn)

14. A list of rhythms (a wrapper for a list of floats)

{ float1 . . . f loatn }

6

15. A concatenation of two list expressions:

e1 @ e2

16. Tuple creation:

<< e1 . . . en >>

17. Subsetting a list:

e[| int |]

2.2 Operators

2.2.1 Arithmetic Operators

Binary arithmetic s are strongly-typed; both operands must be of the same type, and use

the correct for their type.

Binary integer operators in order of precedence: * / + - .

Binary float operators in order of precedence: *. /. +. -.

‘+’ and ‘-’ are unary operators. Suitable for integers and floats. Must be prefix.

‘o’ is a special operator that multiplies a float by 1.5. These are mainly used for rhythm lists

to imitate dotted notes. Postfix

2.2.2 Logical and Comparison Operators

Comparison operators support integers and floats; both operands must be of the same type:

< > == !=

The following boolean comparison operators are listed in order of precedence: == != &&

||

2.2.3 Pitch Operators

All pitch operators are unary. The postfix operators ‘#’ ‘b’ raise or lower pitch by a half

step. The prefix operators ‘ˆ’ and ‘v’ increment/decrement the octave of pitch by one.

2.2.4 Rhythm Operators

• The postfix unary rhythm operator is ‘o’, which multiples by 1.5.

7

2.2.5 List Operators

• Concatenation- One list followed by another of same type connected by an ‘@’ symbol.

See built in functions for tune concatenation

• Index- gets value of element of list using [||] operator

fun get second x = x[| 2 |]

8

3. Control Flow

3.1 Expressions

Expressions always have a return value. A constant expression returns its literal value, a

variable expression returns the value in that variable. All of the list expressions return

the list. Each of the expressions in a sequence of expressions has a value. The function

declarations return the function itself as a value. Expressions are sequenced together by

ending them with a ‘;’.

3.2 If-Then-Else

If statements are structured as if boolean-condition then expr else expr. If-

Then-Else statements are themselves expressions and thus have return types; the expressions

after then and else must have the same type.

fun iszero x = if x == 0 then true else false

3.3 For Loop

A for loop expression returns an object of type unit. It is of the form

for element in list { e }
where e is computed once for every element in the list. Example:

ls = [1 2 3 4]; for x in ls { y = x + 1; print y }

9

4. Functions and Program Structure

4.1 Functions

Functions can be defined using the keyword fun:

fun name arg1 ...argN = expr

Using an earlier example:

fun iszero x =

if x == 0 then true

else false

There is no function overloading in Music Mike. Declaring a different function of the same

name effectively redefines the function. Type checking is enforced when functions are ap-

plied. iszero 5.0 would make the compiler quite unhappy.

Functions are almost first-class citizens: they can be passed in as arguments to other func-

tions and returned by functions, but user-defined functions cannot be nested. Thus we avoid

the funarg problem and handling closure.

4.1.1 Built-in Functions

string of int int of string string of float

float of string string of bool bool of string

print print endline

4.2 Comments

Comments are notated C-style, with \ ∗ ∗\ There is no special single-line comment syntax,

and nested comments are not supported.

10

4.3 Scoping

Local scoping occurs in functions and if-then-else statements. However, there is no implicit

scoping: an assignment to an identifier previously declared will shadow the previous variable

- effectively redefining it.

thing = true

if true then thing = false

else thing = true

At the end of this block of code, thing is false.

11

5. Standard Library Functions

5.1 List Manipulation

5.1.1 map

Takes in function that changes a list and apply that function to existing list. Can be

implemented as:

fun map list f = {
return list = [];

for element in list {
return list = [f(element)]@return list

};
return list

}

5.2 Tune Manipulation

5.2.1 wrap

Initializes tune tuple with specified parameters. Takes in pitch list in position 0, rhythm list

in position 1, [mode in position 3, start pitch(as character such as E3 in position 4]

5.2.2 maptune

Takes in function changing a list, uses that function to change specified list in a tune and

creates new tune with those changes

(here plist is keyword name of position 1 of tune tuple)

5.2.3 concact

Given list of tunes, concatenates them

12

5.3 Timeline Manipulation

5.3.1 synth

Translates data in timeline into MIDI file according to specifications

13

6. User-Defined Types

6.1 General Information

User-defined types are like structures in C with similar syntax and consist of a wrapper with

associated members. Types are defined by the type keyword:

type record {
name = ‘‘Kaitlin’’

score = 5

}
Types are inferred for members of a type, but a default value is needed. For the record type

as shown above, the name member has type string and the score member has type int.

We can initialize a type with the keyword new:

me = new record {
‘‘Harvey’’ 4

}

We can access members of types with a period. me.name returns ‘‘Harvey’’

6.2 Standard Library Types

6.2.1 Tune

• Type containing pitch list in position 0, rhythm list in position 1, [mode in position 3,

start pitch(as character such as E3 in position 4].

• Can create variations off of an instantiated tune with map functions. Generated by

wrap and mapTune

• Internal Structure

14

type Tune= {
plist=()

rlist={}
mode=[]

startnote="C4"

}

6.2.2 Timeline

Timeline is list of tuples with each tuple containing a tune and a start time (in beats). This

is fed into synth to create a MIDI file of generated music.

t=new timeline

t@[<<tune1, 3>>]@[<<tune2, 9>>]

synth t

15

