

MatriCs: The Ultimate Matrix Manipulation Language

Language Reference Manual

Short name: MaC
Extension: .neo

Talal Asem Toukan [tat2132] - Manager
Emmanuel Koumandakis [ek2808] - System Architect

Duru Kahyaoğlu [dk2565] - Language Guru
Florian Shabanaj [fs2564] - Language Guru
Nikhil Raghav Baradwaj [nrb2129] - Tester

Table of Contents
1. Introduction
2. Lexical Elements

2.1 Tokens
2.2 Identifiers
2.3 Keywords
2.4 Punctuation
2.5 Operators and Expressions

2.5.1 Standard Operators
2.5.2 Matrix Operators
2.5.3 Expressions

2.6 Literals
2.6.1 String Literals
2.6.2 Integer Literals
2.6.3 Floating-Point Literals
2.6.4 Matrix Literals

3. Data Types
3.1 Primitive Data Types
3.2 Non-Primitive Data Types

3.2.1 Matrices
3.2.2 Declaring Matrices
3.3.3 Accessing and Setting Array Elements

4. Statements
4.1 The if statement
4.2 The while loop
4.3 The for loop
4.4 The foreach loop

5. Functions
5.1 Function definitions
5.2 Calling functions

6. Program Structure and Scope
6.1 Program Structure
6.2 Scope

7. Built in Functions
7.1 The print Function
7.2 The dimension Function
7.3 The identity Function
7.4 The zeros Function

8. The Standard Library

Appendix A. Sample Code
Appendix B. Context-Free Grammar

1 Introduction

Matrices are crucial tools in representing and manipulating finite sets of data across a
wide range of subject matter, including the life sciences, mathematics, engineering, and
computer science. To add to that, basic matrix operations are unreasonably difficult to
perform in existing languages without the use of external packages in languages like
Python and R. Therefore, the purpose of our language, MatriCs, is to streamline that
process by simplifying those computations, while simultaneously reducing the running
time of basic operations. Using syntax like that of common high-level languages, MatriCs
is tailored to programmers familiar with those languages, but not necessarily familiar
with data science and matrix packages like SciPy (Python), NumPy (Python), and Matrix
(R).

MatriCs main advantage is automatic parallelization. This special feature ensures that
we preserve the hardware/software division paradigm while taking advantage of
processors with SIMD (single instruction multiple data)/Vectorization capabilities. Since
MatriCs compiles to an LLVM intermediate representation, we can take advantage of
LLVM’s automatic parallelization infrastructure. The programmer can then write
sequential instructions and have the compiler generate vector instructions. This is,
however, only done for the built-in matrix functions and operators but it is a significant
improvement for most common linear algebra applications.

MatriCs is a strongly typed language that combines a high-level syntax with a whole host
of special operators. These operators enable the user to perform fundamental
computations involving linar algebra, including but not limited to calculating a matrix’s
transpose and inverse, carrying out matrix multiplication, and extracting sub-matrices
through slicing. At the very core of our language is the special data type: the matrix.
MatriCs will compile to LLVM.

2 Lexical Elements

2.1: Tokens
Our language can be broken down into six categories of tokens: identifiers, keywords,
literals, operators, punctuation, and comments. Whitespace is used to separate tokens but
otherwise will be ignored. Indentation should be used for stylistic purposes but is not
necessary for the proper functioning of MatriCs programs.

2.2: Identifiers
Identifiers are strings used for naming different elements, such as variables and functions.
Identifiers must begin with a letter, but can contain digits and underscores as well.

These rules are described by the definitions involving regular expressions below:
identifier := (letter) (letter | digit | underscore)*
digit := ‘0’ - ‘9’
letter := uppercase_letter | lowercase_letter

uppercase_letter := ‘A’ - ‘Z’
lowercase_letter := ‘a’ - ‘z’

2.3: Keywords

The following literals cannot be used as identifiers. They are also case sensitive.

Syntax Description

if Similar to C conditional

elif Similar to C conditional (but with `elif` keyword instead of `else if`)

else Similar to C conditional

for Similar to C for loop

foreach Enhanced for loop that executes action for each element in the matrix

while Similar to C while loop

return Return from function

null No data

void Returns nothing

import Import external libraries for extended functions

2.4: Punctuation

Symbol Purpose

; Used to end a statement, as well as to define each row of a matrix.

{ } Curly brackets are used to enclose functions, while and for loops,
and if statements. In other words, they are used to delineate the
scope of blocks of code in the program. They are also used to
define the special data type, matrix.

() Use to specify and pass arguments for a function and the
precedence of operators. Also used to enclose conditions in for
and while loops and if statements.

[] Use to specify dimension of the matrix data-type when it is
declared. Also used to access elements in the array at a given
position. ‘

, Used to separate function arguments and to separate different in a
specific row in a given matrix.

“ ” Used to declare a variable of string data type

// Inline comment

/* */ Block comment

2.5: Operators and Expressions

2.5.1: Standard Operators

Name Syntax Example

Addition,Subtraction,
Multiplication, Division,
Modulo

+,-,*,/,% int a = 5 + 8
//a = 13

Additive, Subtractive,
Multiplicative, Divisive,
Modular Assignment

+=, -=, *=, /=, %= int a = 4;
a += 2;
//a = 6

Assignment = int a = 7
//a has a value of 7

Equality check == 7 == 7
//Returns 1

Greater than >

6 > 5
//Returns 1

Less than < 5 < 3
//Returns 0

Greater than or equal to => 5 => 4
//Returns 1

Less than or equal to <= 5 <= 5
//Returns 1

Not equal != 5 != 3
// Returns 1

Logical Not ! int a = 1;
int b = 0;
!(a && b) //Returns 1

Logical AND && //with the values from the
example above
a && b //Returns 0

Logical OR || //with the values from the
example above
a || b //Returns 1

2.5.2 Matrix Operators

Name Description Syntax Example

Scalar
Multiplication,
Scalar Division,
Scalar Power

Element-wise
multiplication/
division or scalar
multiplication/
division/power

.*, ./, .^ mat int C = A.*B;
mat int C = A./B;
mat int C = A.*2;
mat int C = A./2;
mat int C = A.^2;

Matrix
Multiplication,
Matrix Division

Matrix
multiplication/
division.Operation
is not commutative.
If at least one input
is scalar, then A*B
is equivalent to
A.*B and is
commutative.

*, / mat int C = A*B;
mat int C = A/B;
mat int C = A*3;
mat int C = A/3;

Addition,
Subtraction

Addition/
subtraction, scalar
or element-wise

+, - mat int C = A+B;
mat int C = A+2;
mat int C = A+B;
mat int C = A-2;

Transpose Returns the
transpose of a
matrix

’ mat int B = A’;

Indexing Returns the
element in the
specified row and
column of a given
matrix

matr_x[row_index][
column_index]

matr_x[2][4]
//returns the
element in the 3rd
row and 5th column
of the given matrix

Slicing Returns an array of
elements with the

matr_x[row_index1:
row_index2,

matr_x[1:2,2:4]
//returns the matrix

specified location in
terms of rows and
columns

column_index1:col
umn_index2]

in the 2nd to 3rd
rows and 3rd to 5th
columns

2.5.3: Expressions

Expressions are made of at least one operand and zero or more operators. Innermost
expressions are evaluated first and the priority of an expression is determined by
parentheses. The direction of evaluation is from left to right.

2.6: Literals

2.6.1: String Literals

String literals are a sequence of zero or more letters, spaces, digits, other ASCII
characters numbers 32 to 126, excluding the double quote. These strings should be
enclosed in double quotes. For example: “Hello, world”.

2.6.2: Integer Literals

Integer literals are one or more number digits, in succession with no whitespace or
punctuation character in between them. For example: 42, 666, 2.

2.6.3: Floating-Point Literals

Floating-point literals are decimal numbers. A decimal number is a fraction whose
denominator is a power of ten and whose numerator is expressed by figures placed to the
right of a decimal point. The integer part is expressed by figures placed to the left of a
decimal point. Similarly to integer literals whitespace is not allowed to separate digits or
digits and the decimal point `.`. For example: 4.2, 5.0, 222.666

2.6.4: Matrix Literals

Matrix literals can be integer or floating-point numbers. Matrices can only be composed
of entirely integers or floating-point numbers. For example: [1,2,3; 4,5,6; 7,8,9;
10,11,12], [1.0,1.5; 2.0,2.5; 3.0,3.5]

3 Data Types

3.1: Primitive Data Types

MatriCs provides primitive data types that are common to many high level languages.
The full list of primitive data types is given below:

Type Description Syntax Range of Values Example

integer Used to define
integer types

int -2,147,483,648
to
2,147,483,648

int a = 5;

float 32-bit floating
number

float ±1.7976931348
6231570E+308

float a =
5.0;

bool Used to define
boolean types
(true and false)

bool True, False bool flag =
true;

string Used to define
strings of
characters

string Any string of
ASCII characters
enclosed,
excluding double
quotes.

string str =
“abcd1234”;

3.2: Non-Primitive Data Types

3.2.1: Matrices

Note that MatriCs doesn’t have a data type called arrays and therefore the matrix data
type can be used to declare/define an array of any dimensions (i.e. the matrix data type
can be used to declare/define one dimensional array).

Type Description Syntax Example

matrix Defines a matrix mat mat int matr_x =
{1,2,3; 4,5,6; 7,8,9};

3.2.2: Declaring Matrices

A matrix is declared by first typing “mat” followed by the data type to be stored in the
matrix, the name of the matrix, and the dimensions of the matrix enclosed by square

brackets. An example is given below:

mat int matr_x [2][5]; //returns a 2 by 5 uninitialized matrix holding values of type int
mat int matr_x = {0, 0, 0; 0, 0, 0}; //declares a 2 by 3 and initializes its values to zero

3.3.3: Accessing and Setting Array Elements

A matrix element can be accessed by simply typing the name of the matrix and the
dimensions of the element desired to be accessed inside square brackets.

int elmt = matr_x[2][5];
//elmt is equal to 6 - i.e. the element in the second row and fifth column of “matr_x”

Array elements can be set either in the declaration stage or later on. Simultaneous
declaration and definition is demonstrated in the example below:

mat int matr_x = {1,2,3; 4,5,6; 7,8,9};

Array elements can also be set after declaration. An example is given below:

matr_x[2][5] = 99

4 Statements

4.1: The if Statement

Format:

if(condition){

action1;
}elif(condition){

action2;
}else{

action3
}

Description:
The if statement consists of a block of code that only executes if the condition enclosed
within the parentheses is true. If not, the block of code is ignored and the program jumps
to the next line. Optional additions include elif, which contains another condition to be
checked, and else, which executes in the case that none of the conditions above are met.
These additions are not required, but if an else statement is used, then it should be the last
element of the statement.

4.2: The while Loop

Format:
while(condition){

action;
}

Description:

The while loop consists of a block of code that repeatedly executes as long as the
condition enclosed within the parentheses is true. If the condition is not true when the
code is first encountered, then the program jumps over the block entirely. Furthermore, if
the condition is true and remains true indefinitely, then the code gets caught in an infinite
loop and the program never continues beyond the block.

4.3: The for Loop

Format:
for(variable initialization; condition; increment step){

action;
}

Description:

The for loop is a generalization of the while loop. Within the parentheses there are three
distinct parts, separated by semicolons. The first part, variable initialization, runs once
when the for loop is first encountered. The second part is a condition checked on every
iteration to determine whether the block of code inside the loop should be executed. If it
is executed, the third part then increments (or decrements) and the condition is
re-evaluated. The initialization, condition, and increment can be any expressions.

4.4: The Enhanced foreach Loop

Format:
foreach(element e : matrix){

action;
}

Description:

The foreach is an enhanced version of the for loop that serves the specific purpose of
iterating over a matrix and performing an action for/on every element of that matrix.
Within the parentheses there are two parts: the matrix to be iterated over, and each
element e that can be accessed within the block of code. The syntax here is less flexible

than the ordinary for loop. Only foreach loops resembling the one above will compile.

5 Functions

5.1 Function Definitions

Function definition consists of the type of value returned by the function followed by the
name of the function and the set of parameters and types enclosed in parentheses. The
scope of the function will be defined by the opening and the closing curly braces, one
placed after the function declaration and the other placed after the block of code defining
the function is finished. An example of a function is given below:

int determinant(mat int m){
 int det = 0;
 int sign = 1;

 if(rows(m) == 1) { // base case, dimensional array
 return m[0][0];
 }

5.2 Calling Functions

A function can be called by its name followed by its parameters. Note that there is no
need to specify the type of the parameter when calling the function. An example is given
below:

sum (2, 4) //returns the sum of 2 and 4

6 Program Structure and Scope

6.1 Program Structure

MatriCs program are found on a single source file. The major components of a MatriCs
program are matrix declarations, matrix specifications, and function declarations in this
specific order.

6.2 Scope

Declarations made within a while/for loop, if statement, or any function are available
only by reference within this specific block of code. Ones that are made outside of
while/for loops, if statement, or any function are available by reference throughout the
rest of the code.

7 Built-in Functions

7.1 The print Function

void print(string str): prints string str on the console

7.2 The dimension Function

mat int dim(mat int matrix)
OR
mat int dim(mat float matrix) : returns a one dimensional matrix (array)
consisting of two integers {number of rows; number of columns}

7.3 The identity Function

mat int identity(int size) : returns a square `size` by `size` identity matrix

7.4 The zeroes Function

mat int identity(int rows, int cols): returns a `rows` by `cols` matrix
with all values initialized to 0

8 Standard Library

The standard library is not a part of MatriCs, but an environment that supports standard
MatriCs will provide the function declarations and type and macro definitions of this
library. The standard library is invoked by calling “import stdlib”. Currently, the
MatriCs standard library contains the following functions:

print(“string input”, const char *format)

*format is an optional character to indicate the kind of data being printed, especially
when the print statement involves at least two kinds of data types. This is similar to C or
Java, where format of an integer being printed might be indicated by %d.

Appendix A Sample Code

Methods may be used recursively:

int determinant(mat int m){
 int det = 0;
 int sign = 1;

 if(rows(m) == 1) { // base case, dimensional array
 return m[0][0];
 }

 // lib functions to get # of rows and columns in m
 // (actually the values should be the same anyway)
 int rows = rows(m);
 int cols = cols(m);

 // finds determinant using row-by-row expansion
 for(int i = 0; i < rows; i++){

 // keep decomposing the matrix by 1 dimension
 mat int smaller_m[rows-1][cols-1];

 for(int a = 1; a < rows; a++){
 for(int b = 0; b < cols; b++){

 if(b < i){
 smaller_m[a-1][b] = m[a][b];
 }
 elif(b > i){
 smaller_m[a-1][b-1] = m[a][b];
 }
 }
 }

 if (i%2 == 0){ // sign changes based on i
 sign = 1;
 }
 else{
 sign = -1;
 }
 det += sign*m[0][i]*determinant(smaller_m); // rec call
for det

 }
 return det;
}

mat int transpose(mat int m) {
 int rows = rows(m);
 int cols = cols(m);

 mat int m_transpose[cols][rows];

 for(int i = 0; i < rows; i++) {
 for(int j = 0; j < cols; j++) {
 m_transpose[j][i] = m[i][j];
 }
 }

 return m_transpose;
}

int sum_matrix(mat int m) {

int sum = 0;
foreach(int e : m) { //Will go through all elements

sum += e;
}
return sum;

}

Appendix B Context-Free Grammar

program → ε | program vdecl | program fdecl

fdecl → id (formals) { vdecls stmts }

formals → id |formals , id

vdecls → vdecl | vdecls vdecl

vdecl → type id; | type id = expr; | matrix id | matrix id = matexpr;

stmts → ε | stmts stmt

stmt → expr ; | return expr ; | { stmts } | if (expr) stmt else_if | if (expr) stmt else_if

else stmt | while (expr) stmt | for (expr ; expr ; expr) stmt | foreach(vdecl : id)

expr → lit | id | id (actuals) | (expr) | expr + expr | expr - expr | expr * expr | expr / expr

| expr == expr | expr != expr | expr < expr | expr <= expr | expr > expr | expr >=
expr | expr = expr | expr .* expr | expr ./ expr | expr .^ expr

type → int | float | bool | string

matrix → mat type | mat type[lit] | matrix[lit]

actuals → expr | actuals, expr

else_if → else_if elif (expr) stmt | ε

