
MatCV - Language Reference Manual

Abhishek Walia (aw3011),
Anuraag Advani (ada2161),

Rahul Kapur (rk2749),
Shardendu Gautam (sg3391)

Contents
1 Introduction 2

1.1 Motivation . 2
1.2 Description . 2

2 Syntax 2
2.1 Data Types . 2
2.2 Operators . 3

2.2.1 Operator Precedence . 3
2.3 Comments . 4
2.4 Keywords . 4
2.5 Identifiers . 5
2.6 Library Functions . 5

3 Structure 6

4 Statements 6
4.1 Matrix Declaration . 6
4.2 Printing . 6
4.3 Matrix Dimensions . 6
4.4 Matrix Operations . 6
4.5 Matrix Iteration . 7
4.6 Row and Column Iteration . 7

5 References 8
5.1 C Language Reference Manual . 8

1

1. Introduction

1.1 Motivation
MatCV is a programming language that aims at providing the programmers with a
syntax that makes matrix manipulation easier and more intuitive. Since many fields,
such as computer vision and machine learning use matrix operations extensively,
our language introduces some constructs that allow beginners to get started easily.
"Mat" in MatCV denotes that it deals with matrices and "CV" stands for Computer
Vision. MatCV primarily focuses on matrix operations that will be more useful for
computer vision related applications.

1.2 Description
MatCV will support primitive matrix operations such as transpose, inverse, deter-
minant etc. We introduce a few constructs that will make looping over pixels, rows
of a matrix, elements of a matrix, columns of a matrix as well as performing updates
in these loops intuitive and more readable. Concatenation of matrices, creating ma-
trices with zeros, read and display images, add and subtract pixels etc. are some
other features that will be supported by the language.

2. Syntax

2.1 Data Types
MatCV will support following data types:

int 64 bit integers (32 bit integers
will not be supported)

float 64 bit floating point numbers
boolean True or False
matrix m-by-n matrix which stores

int/float type data
string Stores sequence of UTF-8

characters

2

2.2 Operators
While considering operations between data types, we enforce some restrictions on
the data types that can be used with each other. The operators we support are
listed below:

Addition +

Addition is supported between
two matrices having the same
dimensions. Addition of a
matrix and scalar is not

supported.

Subtraction -

Subtraction is supported
between two matrices having
the same dimensions. Addition
of a matrix and scalar is not

supported.

Multiplication *

Multiplication of two
compatible matrices as well as
multiplying a matrix and a

scalar is supported.
Remainder %

Remainder obtained upon
integer division.

Exponent ^
a ^b Returns the value of a

raised to power b

Division /

Division of two compatible
matrices as well as dividing a

matrix and a scalar is
supported.

Transpose ’
Transpose of a matrix is

supported.

Assignment =
We assign an appropriate RHS
to an appropriate LHS where
type promotion is supported.

Equality Check == Returns 1 if two 1x1 matrices
are equal

Not Equal To !=
Returns 1 if two matrices are

not equal
Greater Than

Operator > Compares the value of the
elements in two 1x1 matrices

Greater Than or
Equal To Operator >= Compares the value of the

elements in two 1x1 matrices
Less Than Operator < Compares the value of the

elements in two 1x1 matrices
Less Than Operator

or Equal To <= Compares the value of the
elements in two 1x1 matrices

AND && Logical AND Operator
OR || Logical OR Operator

2.2.1 Operator Precedence

The precedence of our operators is the following from Highest to Lowest :

3

{ }, [] Highest
!
* , /, %
+ , -
< , > ,
<= , >=
== , !=
& &
||
= Lowest

2.3 Comments
Multi - line and nested comments are supported:

/* This is a comment. Comments can be nested
and can be spread across multiple lines.
Comments have to be closed */

2.4 Keywords
MatCV will support following keywords:

row used to iterate over the rows
in a matrix

col used to iterate over the
columns in a matrix

ele identifier to access each
element in a matrix

sequentially
var declares a variable
const modifies a variable to be

immutable
if..else if..else Supports standard conditional

operations
for loops over given elements
break breaks out of loop
continue returns control flow to the

beginning of the loop
pixel is a 1x3 matrix that is used to

store RGB/YCrCb/HSV
values corresponding to a pixel

exit stops the program execution
and returns control to the host

environment
return finish function execution and

return value to the calling
function

4

2.5 Identifiers
Identifiers in MatCV are alphanumeric and must must start with an alphabet.

2.6 Library Functions
MatCV will provide some basic functions which can be extended to implement
complicated functionality:

zeros(m,n) returns a matrix containing
only zeros of dimensions m x n

eye(m, n) returns an identity matrix of
dimensions m x n

inv(a) computes the inverse of
matrix A. Matrix inverse can

also be computed by 1
A

det(A) returns the determinant of a
matrix in float type

rank(A) returns the rank of the matrix
readImage(imagePath) reads an image from the given

path
showImage(windowTitle,img) shows the image in a new

window with window title
sin() Applies sine function to all

elements of a matrix
cos() Applies cos function to all

elements of a matrix
round() Rounds all elements of a

matrix to the nearest int
abs() Absolute function is applied to

all elements of the matrix
ceil() Ceiling function is applied to

all elements of the matrix
floor() Floor function is applied to all

elements of the matrix
log() log function is applied to all

elements of the matrix

5

3. Structure
1. All statements in MatCV are terminated by a semi-colon (;).

2. There is no specific function like ’main’ that serves as the entry point in the
program. Execution begins from the first statement in the program.

3. Blocks of code used by functions, if-else, for loops etc. have to be enclosed
within opening and closing braces i.e. { and }

4. Statements
The following are a few examples of MatCV statements:

4.1 Matrix Declaration
You can declare a new matrix using the following syntax:

A = {1,2; 3,4};

You can also declare a matrix of zeros of size 4x2 using

A = [4][2];

4.2 Printing
The print keyword can be used to print out information to the console. For example:

A = {1,2; 3,4};
print(A[0][1]);

Will print 2 to the console. Row and column indexing starts from 0 in our language.

4.3 Matrix Dimensions
Row size and column size are stored as attributes for a variable internally repre-
sented as a matrix. If A is a matrix of size 5x7 then: print(A.rowSize); will print
value 5 and print(A.colSize); will print the number of columns, that is 7.

4.4 Matrix Operations
Primitive matrix operations such as addition, subtraction, multiplication, transpose,
inverse etc. are also provided by the language. You can invert the matrix A using:

inverseOfA = 1/A;

Alternatively, we could have used the library function inv to find the inverse:

inverseOfA = inv(A);

6

4.5 Matrix Iteration
The proposed language provides an intuitive way to iterate over all elements of a
matrix.

Keyword ele is used in the following fashion in order to iterate over all elements
of matrix A. If you had the following matrix: A = {1,2; 3,4};

Then the following code adds 1 to each element in the matrix:

ele e:A{
e = e + 1;
}

After the execution of above loop, the matrix A would look like:

A = {2,3; 4,5};

Inside the loop, element e contains attributes rowNum and colNum, that can be
used to find the position of the element in the matrix. For example, if the current
element in the loop corresponds to (3,2) in the matrix, then print(e.rowNum) will
print 3 to the console.

There are two more variations to the above loop. You can add var in front of the
variable name, using which you can change the value of the variable but the change
will not be reflected in the matrix:

A = {1, 2, 3; 4, 5, 6};
ele var e:A{

e = e + 3;
print(e);

}

The above example prints 4, 5, 6...9 but the matrix A will still remain {1, 2, 3;
4, 5, 6}.

The const keyword can be used instead of the var keyword, which will throw an
compilation error when e is changed in the loop. This makes sure that the user does
not change the matrix unintentionally:

A = {1, 2, 3; 4, 5, 6};
ele var e:A{

e = e + 3;
}

4.6 Row and Column Iteration
We can also iterate through the rows and columns easily. Keyword row is used
in the following fashion in order to iterate over all rows of matrix. This example
negates all the odd rows of A:

7

row r:A{
if(r.rowNum % 2 ==1) {

r = r * (-1);
}

}

We can similarly use the keyword column to access the columns of the matrix.

The iterators also have attributes, rowNum and columnNum which output the
row and column number at which the iterator is currently operating on.

5. References

5.1 C Language Reference Manual
Dennis M. Ritchie, C Reference Manual, Murray Hill, Bell Telephone Laboratories,
New Jersey 07974
Available at: https://www.bell-labs.com/usr/dmr/www/cman.pdf

8

https://www.bell-labs.com/usr/dmr/www/cman.pdf

	Introduction
	Motivation
	Description

	Syntax
	Data Types
	Operators
	Operator Precedence

	Comments
	Keywords
	Identifiers
	Library Functions

	Structure
	Statements
	Matrix Declaration
	Printing
	Matrix Dimensions
	Matrix Operations
	Matrix Iteration
	Row and Column Iteration

	References
	C Language Reference Manual

