

https://www.google.com/search?q=manatee&biw=1242&bih=522&source=lnms&tbm=isch&sa=X&ved=0ahUKEwjn987L1vTRAhVCySYKHUHiAcMQ_AUIBigB#imgrc=lZU3VsrZH0F2W

M:

ManiT

Manager: Akiva Dollin - acd2164
Language Guru: Irwin Li - izl2000

System Architect: Seungmin Lee - sl3254
Tester: Dong Hyeon (Paul) Seo - ds3457

Language Reference Manual

2

Table of Contents:

Introduction --- 3

Types -- 3

Lexical Conventions -- 3

Comments ---3

Identifiers -- 4

Keywords --- 4

Literals -- 4

Statements --- 5

Declarations --- 5

Expressions -- 6

Operators --- 7

Standard Library Functions --- 9

3

Introduction:
ManiT is a C-like language which enables easy manipulation of large integers and linear

systems and compiles into LLVM. This language would be extremely useful specifically for
quick manipulation of 2D and 3D graphs as well as general purpose number manipulation.
ManiT will include a simple garbage collection as well as type inference.

Types:

Type Description

Integer Numbers without a decimal point (also known
as Integers)

Float Number that contains a decimal point.

String A sequence of characters

Array A container to hold multiple data of the same
datatype

Character A character variable

Lexical Conventions:

When processing a program written in the ManiT language, the program is reduced to a
sequence of tokens. There are five classes of tokens: identifiers, keywords, literals, operators,
and other separators. In our language, spaces, tabs, newlines, single and multi-line comments are
considered to be white-space. In general, white-space is ignored by program. Some white-space,
however, is required to separate otherwise adjacent identifiers, keywords and constants.

Comments:

The ManiT language supports both single-line and multi-line or block commenting.
Comments do not nest, and cannot exist within a string or character literals.

// ... Single-line comment

/* ... */ Block comment.

4

Identifiers:
An identifier is a sequence of letters or digits that identifies some data that the

programmer will interact with. Identifiers can be any length and use any combination of letters
and numbers, but must start with a letter.

Keywords:

All types such as int and float are keywords. In addition, statement keywords such as
if, while, and for are also keywords that are reserved.

Literals:

Any sequence of one or more digits in decimal is treated as an integer literal or constant.
A negative sign is used to specify a negative integer (-1). The integer literal corresponds to the
int type. A character literal consists of a single ASCII character surrounded by single-quotes.
Special characters such as the newline character can be specified using the backslash (\)
character. The character literal has the char type. The following escape sequences may be used
in character and string literals:

Newline NL \n

Horizontal tab HT \t

Backslash \ \\

Double quote " \"

Single quote ' \'

Floating literals consist of a integer part, decimal part, and a fraction part. The integer and

fraction portions consists of a sequence of one or more digits. The decimal portion delimits the
integer and fraction portions and is specified using the period character (.). A floating literal
may be written as 1.5.

A string literal is written as a sequence of zero or more ASCII characters surrounded by
double quotes. Special characters such as the newline character may be defined using the same
escape sequences used for character literals. The string literal is of the string type.

Boolean literals are explicitly the identifiers true and false. The former represents the
logical true and the latter represents the logical false. These identifiers are reserved.

5

Declarations:
To declare functions and variables, use the appropriate syntax.

Variable Declarations:
Variables are declared with the following structure:

var <variable name> = expression;
var example = “hello”;
var anotherExample = 2; //2

Once a variable is declared, it can be assigned and updated:
example = “different string”;
anotherExample = anotherExample + 10; //12

NOTES: updating a variable must remaining type consistent:
anotherExample = “this is wrong” //ERROR

Function Declarations:
Functions are declared in the following manner:

functionName (input1, input2, … , inputN) {
//do stuff here;

}

Function Calls:
result = functionName(input1, input 2, input 3, ..);

Statements:
ManiT allows for many different types of statement, all that all similar to C.

End of Statement:

All statements must be closed by semicolons:
‘;’

Expression Statement:
Any assignment or function calls are expression statements. The syntax for expression

statements are:
expression;

Conditional Statement:

If s and Elses are chained to create conditional statements. Expressions are given for each
case as well as statements to be executed. If the expression evaluates to true, the statements

6

provided are executed. If the expression evaluates to false, then the else’s provided statement is
executed is there is an else:

if (expression) { statement; }
else { statement;}

For Statement:

The for structure is similar to C and Java. Three expressions must be provided. An
initializer, a condition, and an increment. The for loop executes until the condition evaluates to
false which is evaluated at the beginning of each loop. At the end of each execution, the
increment is evaluated. During the loop, the provided statement is executed:

for(expressionInit; expressionCondition; expressionIncre){ statement; }

While Statement:

While expressions are evaluated after each execution of the provided statement. The
statement is executed for as long as the expression evaluates to true:

while (expression) { statement; }

Return Statement:

return statements exits functions and returns to the function call. If return is given
without an expression, the function returns to the call. If an expression is given, it is evaluated
and then returned.

return;
return (expression);

Expressions:
Primary Expressions:
identifier
The type of the identifier is specified by the type identifier.
constant, null
A constant refers to data type literal. The keyword null represents a non-existing reference.
(expression)
The pair of opening and closing parenthesis can be used to group expressions
expression[expression]
Element index access. Indexing is only supported for String literals, integer literals, and float
literals. The index must be an integer. If the expression is a negative integer, the indexing starts
from the right. (right → left)

7

identifier[expression]
Element index access. The expression must be any integer. If the expression is a negative integer,
the indexing starts from the right. (right → left)
identifier[start:end:increment]
Returns the elements in a list from the start position element to the end position element with
increments upon each element of size increment.
identifier.feature
A feature can be replaced by one of:

.left
The .left feature is used for both Integer and Float. The .left denotes the value to the left

of the decimal point.
.right
The .right feature is used for both Integer and Float. The .right denotes the value to the

right of the decimal point.
.pow
The .pow feature is used for both Integer and Float. The .pow denotes the exponent of the

value itself. E.g.: 3.pow(2) is 3^2. By calling pow separately, it can also return the exponent
power of the value itself.

.coeff
The .coeff feature is used for both Integer and Float. The .coeff denotes the coefficient of

the value itself. E.g.: a = 3; a.coeff() will return 3.

Unary operators:
Expressions with unary operators group from right-to-left.
expr++, expr--
A unary expression followed by a ++ or a -- is a unary expression. The operand is incremented or
decremented by 1.
!expr
The operand of the ! operator must be a boolean type. The result is false if the value of the
operand compares to true and the result is true if the value of the operand compares to
false.

Multiplicative operators:
expr * expr
The * operator denotes either multiplication or multiple concatenation. If the left-hand-side
expression is string or char type and the right-hand-side expression is integer type, the entire
expression evaluates to a string type that contains concatenation of the left-hand-side expression

8

right-hand-side times. Otherwise, * denotes multiplication. The expression on either side must be
either integer or floating point expressions.
expr / expr
The / operator denotes division. Integer division truncates fractional portion of the result.
expr % expr
The % operator denotes the integer modulo operator. Expressions on both sides must be integers.

Additive Operators:
The operands are either integers or floating point numbers. Integers are promoted to floating
point type if one is type integer and other is floating point type.
expr + expr
The + operator denotes integer and floating point addition.
expr - expr
The - operator denotes integer and floating point addition.

Equality Operators:
expr == expr, expr != expr
The == and != operators denote equal to and not equal to comparison. Both operands must be
either both integers or floating point types.

Relational Operators:
expr < expr, expr <= expr, expr > expr, expr >= expr
The < and > operators denote less than and greater than comparisons. The <= and >= operators
denote greater than or equal to and less than or equal to comparisons.

Boolean Operators:
expr && expr, expr || expr
The && operator denotes the AND operation and || denotes the OR operation. Both operands
need to be boolean type.

Assignment Operator:
identifier = expr
The = operator denotes assignment of the expressions to a variable. The variable must be
declared. NOTE: Overloading a variable with a different type expression throws an ERROR.
Ex:

var temp = 3;
temp = “hello”; //error
temp = 4; //4

9

Standard Library Functions
Some Built-in Functions:

map

map (Function, List 1, List 2, List 3, ..);
map (Function, Array 1, Array 2, Array 3, ..);
map (Function, List 1, Array 1, …);

The map function takes a function and applies the function to every element in the List or

Array. If there are more than 1 List or Array, the map function applies to the rest of the List or
Array in the inputs.

print

print(expression);

The print function prints the expression to standardoutput.

sqrt

sqrt(n); //int
sqrt(n); //float

The sqrt function computes the square root of the integer or float n.

length

len (input);

The length function takes an input and returns the length of the input. For instance, for

Strings, it returns the length of the String. For Integers, it would return the length of the (String)
of Integer.

sort

sort (any list);
sort (any array);

The sort function takes either a List or an Array and sorts the List and Array in ascending

order. For Integer and Float, the sort returns a List or Array in ascending elements. For Strings,
the sort returns a List or Array in the ordering a standard dictionary would.

10

compare
 compare ((Integer) element 1, (Integer) element 2);
 compare ((Float) element 1, (Float) element 2);

The compare function compares two input elements. It will return an integer in which if

the first element is greater than the second element, the return value is positive. If the first
element is equal to the second element, the return value is zero. If the first element is less than
the second element, the return value is negative.

