
GRAIL Language Reference Manual

Aashima Arora (aa3917) - system architect
Rose Sloan (rns2144) - manager

Jiaxin Su (js4722) - tester
Riva Tropp (rtt2114) - language guru

February 22, 2017

1 Introduction

This manual describes GRAIL, a language optimized for building and performing computations
on graphs. The syntax is streamlined to facilitate easily constructing, accessing, searching, and
modifying graphs, nodes, and edges.

2 Tokens

GRAIL tokens are separated by one or more whitespace characters. Comments delimited by /*
and */ or single-line comments beginning with // are also ignored. Comments may not be nested.

2.1 Identifiers

An identifier is a sequence of characters, all of which must be either alphanumeric or the underscore
(_) character. The first character must be a letter. Uppercase and lowercase letters are considered
distinct but the choice of case in identifiers holds no significance to the compiler.

2.2 Keywords

The following identifiers are reserved as keywords and may not be used elsewhere: graph, digraph,
edge, string, num, char, void, boolean, if, else, while, for, return, weight, to, from, sort, break,
continue, display, type, empty, free, print, size, true, and false

2.3 Constants

Numbers, denoted num, are sequences of digits that can contain a single decimal point. The
decimal point must be followed by one or more digits.

Characters, denoted char, are single characters enclosed by single quotation marks.

Boolean constants are represented by the keywords true and false. Booleans may take on only
these two values and void (and the last only on initialization).

String literals are a series of characters delimited by double quotation marks. Strings cannot be
nested, though a double quotation mark can appear inside a string by using the escape sequence
\”.

1

3 Types

3.1 Primitive Types

GRAIL has 4 primitive types: boolean, char, num, and void. A boolean is a Boolean value. A char
is a single member of the ASCII character set. (More complex character sets are not supported.)
A num is an number. The void type is a null type, used in functions that return no variables and
uninitialized primitives.

3.2 Derived types

Lists are arrays of primitives or objects of the same type. The type of a list is the type of the first
element inserted into a list. If all the elements of a list are removed, it maintains its type.

Strings are arrays of chars. While strings are stored internally as arrays, they act similarly to
primitive types, as they can be declared with the keyword string and can be nodes of graphs.

Edges are types consisting of two nodes, which must be primitives or strings of the same type,
which is the type of the graph or digraph they belong to, as well as a weight, which is a num.

Graphs are collections of nodes and edges. Each graph has a type, which is either a string or a
primitive type, and every node is an object of that type. Internally, the graph is represented as an
ordered list of edges, and which can be iterated over and sorted by edge features.

Digraphs are identical to graphs except that the edges in digraphs are directed. That is, while the
choice of which node is stored as the source and which is the destination in an edge of a graph is
arbitrary, in a digraph it is not.

4 Objects and LValues

An object is a named region of storage; an lvalue is an expression referring to an object. An
obvious example of an lvalue expression is an identifier with suitable type and storage class. The
name “lvalue” comes from the assignment expression E1 = E2 in which the left operand E1 must
be an lvalue expression.

Edges:

Edges are a built-in object with three features, to, from, and weight, which can be accessed thus:

my_edge.weight

Examples:

num name = 3; //num is an lvalue
graph g = {e, f, g}; //g is an object

5 Expressions

Expressions, consisting of type-compatible operators or groups of operators separated by operands,
are outlined below in descending order of precedence.

5.1 Subset Operators

di/graph*:

a*[i] yields the node (char, string, or int) stored at index i in di/graph* a.

2

a*[x : statement] (e.g. a*[x : x == 3]) yields a di/graph* of nodes x that match the condition/s.
(The statement must return a boolean.) If no conditions are supplied, yields all nodes.

graph:

g[i] yields the edge stored at index i in di/graph g.

g[x -(</>/-) y: statement] (e.g. [x – y: x == 3 && y > 4]) yields a graph of edges x, y with the
appropriate connection (–, ->, or <-), where x and y match the conditions specified. If a condition
is left out, yields all nodes that fit the remaining conditions. If all conditions are left out, yields
the whole graph. In a digraph, – is equivalent to connections in both directions. For example, the
graph of all nodes going to z could be called using g[x -> y: y == z].

5.2 Unary Operators

expr* (di/graph): Refers to the node collection of the graph.

!expr (booleans, boolean expr): Logical not. Yields the opposite value of the expression.

-expr (num:) Numeric negation. Yields the expression multiplied by negative one.

5.3 Numeric Binary Operators

Binary operators group left to right.

expr * expr (num, graph, digraph): Multiplication operator.

expr / expr (num, graph, digraph): Division operator.

num graph digraph
num Yields product (*) or

quotient (/) (num)
NS NS

graph Yields a graph with the
edges (and nodes) from
both graphs. Duplicate
edges are multiplied (*)
or divided (/)

NS

digraph Yields a graph with the
edges (and nodes) from
both graphs. Duplicate
edges in the same direc-
tion are multiplied (*) or
divided (/)

3

expr + expr (num, di/graph, di/graph*, edge) (commutative): Addition Operator.

num di/graph di/graph* edge
num Yields sum Yields a

di/graph* list
with the num
node added,
if not already
present

di/graph Yields a graph
with the edges
(and nodes)
from both
(di)graphs. Du-
plicate edges
(in the same
direction) are
summed

Yields a graph
with all the
edges and from
the di/graph
and the edge
and its associ-
ated nodes. If
the edge already
exists in the
graph, they are
summed.

di/graph* Yields a
di/graph* list
containing the
nodes in both
di/graph*s

edge

expr - expr (num, graph, digraph) Weight: Subtraction operator.

num di/graph edge di/graph*
num Yields difference Subtracts a

num node and
all associated
edges from the
di/graph list,
if a num type
di/graph

di/graph Yields a
di/graph with
the edges (and
nodes) from
both di/graphs.
In the case
of duplicate
edges, the edges
weights from the
second graph
are subtracted
from the first

Yields a graph
with all the
edges and from
the di/graph
and the edge
and its associ-
ated nodes. If
the edge already
exists in the
graph, the one
on the right is
subtracted from
the one on the
left.

Not Supported

digraph Not Supported Yields a
di/graph*
list containing
the nodes in the
first and not in
the second

4

expr .+ expr (graph, digraph, edge): Left join operator.

di/graph edge
digraph Yields a (di)graph with the edges

(and nodes) from both graphs. In
the case of duplicate edges (in the
same direction), only those in the
left are taken.

Yields a (di)graph with the edges
(and nodes) from graph and the
edge. In the case of duplicate
edges (in the same direction),
only those on the left are taken.

expr .- expr (graph, digraph): Subtraction Operator.

di/graph di/graph - edge
digraph Yields a (di)graph with the edges

(and nodes) from the first graph
and without the edges of the sec-
ond.

Yields a (di)graph with the edges
(and nodes) from graph without
the edge.

expr & expr (graph, digraph) Intersection Operator: Yields a (di)graph with only the edges (and
nodes) that appear in both graphs.

5.4 Relational Operators

expr < expr (num), less than

expr > expr (num), greater than

expr <= expr (num), less than or equal to

expr >= expr (num), greater than or equal to

Return true if the relation is true and false otherwise.

5.5 Equality Operators

expr == expr (num) returns true if the numbers are equal and false otherwise.

expr != expr (num) returns false if the numbers are equal and true otherwise

expr == expr (graph, digraph) returns true if both di/graphs contain the same nodes and edges.

5.6 Logical Operators

expr && expr (boolean) returns true if both booleans or boolean expressions are true and false
otherwise.

expr || expr (boolean) returns true if at least one of the booleans or boolean expressions is true
and false otherwise.

5.7 Assignment

lvalue = expr replaces the value of the lvalue with the value of the expr if they are the same type.

5.8 Edge Operators

expr –(w) expr yields an edge connecting both expr’s (num, char, or string) with optional weight
(in optional parens) w. An unset weight defaults to 1.

expr ->(w) expr yields directed edge from the first expr (num, char, or string) to the second with
similarly optional weight conventions.

5

expr <-(w) expr yields directed edge from the second expr (num, char, or string) to the first with
similarly optional weight conventions.

6 Declarations

Declarations define and specify the properties of an identifier in a structured format.

6.1 Type specifiers

The type-specifiers in our language are:

• void

• char

• string

• num

• edge

• graph

• digraph

• list

• node

These type specifiers define the type of the variables, parameters, and function return types. Num
includes not only integers but also floating point numbers. Void is only allowed in the function
return type.

6.2 Object Declarators

Each type has its own declarator, formatted in the following way:

num variableName;
char variableName;
string variableName;
edge variableName;
graph variableName;
digraph variableName;

The variableName is the identifier of the variable.

6.3 Function Declarators

The Function declarator is formatted in the following way:

functionName(param, param, ...)

FunctionName is the identifier of the function, followed by a left parenthesis, a list of function
parameters (optional), and a right parenthesis. In the function parameter list, these parameters
need to be separated by commas.

6

6.4 Initialization

The general format of the initialization of variables is

lvalue = assignment expression / {initializer-list}

More specifically, it can be applied to num, edge, and graph:

num|edge|graph variableName //initialized to void
num variableName = numValue
num variableName = numValue binaryOperator assignment_expression
edge variableName = (node->node) | (node--node) | (node<-node)
graph variableName = {edge, edge, ... } | {list of edges}

The following examples show the declaration and initialization of graphs and nodes:

num graph g = {1->2,2->3,3->4};
g* += 5; //Adding an element to a node list
g += 4<-(2.5)5; //Adding weighted edge to a graph

7 Statements

Statements execute in sequence. They do not have values and are executed for their effects. The
statements in our language are classified in the following groups:

• Assignment statement

• Function-call statement

• Sequence statement

• Control-Flow statement

• Loop Statement

• Jump Statement

7.1 Assignment Statement

Assignment statement is used to assign identifier with the value of the expression. It is formatted
in the following format:

identifierName = expression;

This statement is commonly used for initialization of variables or expressions.

7.2 Function-Call Statement

The function-call statement is used when a defined function is called. It is formatted in the following
format. Parameters can be any of the primitive types or objects or expressions that evaluate to
those types or objects.

type functionName (parameter, parameter, ...);

7.3 Sequence Statement

Statements can be written one after another. This is seen as the sequence statement and is
formatted in the following format:

statement; statement; statement;...

7

7.4 Control-Flow Statement

The control-flow statements use the expression as conditional test to decide which block of state-
ments will get executed. They have the following formats:

if (expression) { statement(s) }
if (expression) { statement(s) } else { statement(s) }
if (expression) { statement(s) } else if (expression) { statement(s) } else { statement(s) }

7.5 Loop Statement

while loop and for loop are available in the GRAIL in the following format:

while (expression) { statement(s) }
for (initialization expression; conditional expression; execution expression) { statement(s) }

The while loop takes one expression as the conditional expression to check if the available variables
or expressions qualify, which determine if the body statement(s) will be executed or not. The
for loop takes three expressions: initialization expression, conditional expression, and execution
expression. The initialization expression will be executed when the for loop is initiated. The
conditional expression is the test expression to check if the condition is satisfied. Once it is
satisfied, the loop terminates. The execution expression will be executed after every time the body
statement(s) is executed.

7.6 Jump Statement

break can be used to break the first outer loop if a certain condition is reached.

for (expression; expression; expression) {
...
if (expression) {

break;
}
...

}

continue can be used to continue to the next round of the loop if a certain condition is reached.

while(expression) {
...
if (expression) {

continue;
}
...

}

8 Scope

A declared entity is a class type, member (class, field, or function) of a reference type, type
parameter (of a class, function or constructor), parameter (to a function, constructor), or local
variable.

Every declaration that introduces a name has a scope, which is the part of the program text within
which the declared entity can be referred to by a simple name.

The scope of a declaration is the region of the program within which the entity declared by the
declaration can be referred to using a simple name.

A declaration is said to be in scope at a particular point in a program if and only if the declaration’s
scope includes that point.

8

The scope of a formal parameter of a function or constructor is the entire body of the function or
constructor.

The scope of a function’s type parameter is the entire declaration of the function, including the
type parameter section, but excluding the function modifiers.

9 Library Functions

9.1 Print

Prints strings to standard output.

print(string)

9.2 Display

Function for displaying graphs and digraphs

display(graph)
display(digraph)

9.3 Sort

Returns a graph with its contents sorted by a feature of the edges, with an optional ascend-
ing/descending field. Default is ascending.

sort(graph, feature, [asc/desc])

9.4 Size

Returns the size of a derived type, for example:

size(my_graph) //returns the number of edges in the graph my_graph
size(my_graph*) //returns the number of nodes in the graph my_graph

10 Examples

The following program implements Djikstra’s Algorithm for finding a shortest path.

list getclosestpaths(graph g, num s){
g = sort(g, weight, asc);
list dist = [size(g)];
list prev= [size(g)];
list visited = [size(g)];

num inf = Grail.Math.INF;

for(num i = 0; i < size(dist); i+=1){
dist[i] = inf;
visited[i] = false;

}
dist[s] = 0;

for(num i = 0; i < size(g); i+=1){

9

next = closestNode(dist, visited);
visited[next] = true;
neighbors = g[x --> y : x == next]; //Get all nodes from x

for(num j = 0; j < size(neighbors); j+=1){
num n = neighbors[j];
num d = neighbors[j].weight + dist[next];

if(dist[n] > d){
dist[n] = d;
prev[n] = next;

}
}

}
return pred;
}

num closestNode(list dist, list visited){
num d = Grail.Math.INF;
num n;
for(num i = 0; i < size(dist); i++){

if(v[i] == false && dist[i] < d){
n = i;
d = dist[i];

}
}

return n;
}

//initialize a graph, add a node and an edge, and run closest paths algorithm

graph g = {1->2,2->3,3->4};
g* += 5;
g += 4->5;

list allPaths = getClosestPaths(g,1);

11 Recapitulation

GRAIL is intended to be a language for the sorting, searching, and manipulating graphs, nodes, and
edges. GRAIL is possessed of several types, denoted by whitespace-separated tokens. Some, such
as num and char, are primitive types, while others, like graph and list, are derived types. Graphs
are the central types of our language, defined as a collection of nodes and edges, where nodes
can be any primitive type or string. GRAIL offers a robust library of operators for merging and
subsecting graphs, searching and modifying nodes and edges, and standard logical and assignment
operators. Functions and primitives have stated types, derived types require all their elements to
be the same as the first type inserted. Control flow is similar to C, with the omission of the pure
block scoping. A standard library also includes functions such as print and display.

10

	Introduction
	Tokens
	Identifiers
	Keywords
	Constants

	Types
	Primitive Types
	Derived types

	Objects and LValues
	Expressions
	Subset Operators
	Unary Operators
	Numeric Binary Operators
	Relational Operators
	Equality Operators
	Logical Operators
	Assignment
	Edge Operators

	Declarations
	Type specifiers
	Object Declarators
	Function Declarators
	Initialization

	Statements
	Assignment Statement
	Function-Call Statement
	Sequence Statement
	Control-Flow Statement
	Loop Statement
	Jump Statement

	Scope
	Library Functions
	Print
	Display
	Sort
	Size

	Examples
	Recapitulation

