

DECAF

Language Reference Manual

Hidy Han (yh2635) - Language Guru

JiaYan Hu (jh3541) - Systems Architect

Kim Tao (kmt2152) - Tester

Kylie Wu (kcw2141) - Manager

Table of Contents

1. About DECAF 2

2. Data Types 2

i. Primitives

ii. Literals

iii. Built-ins: Strings

iv. Built-ins: Lists

v. Built-ins: Tuples

vi. Built-in Libraries

vii. Objects

viii. Casting

3. Lexical Conventions 15

i. Identifiers

ii. Comments

iii. Keywords

iv. Operators

v. Precedence and Associativity Rules

vi. Brackets

vii. White Space

4. Statements 21

i. Declarations

ii. Expressions

iii. Control Flow

5. Sample Executable 25

1

1. About DECAF
DECAF is a general-purpose, object-oriented language that compiles to LLVM. It is a
language that will be intuitive to use for programmers who have previously used other
high-level languages, such as Java, C, and Python. DECAF will extract a core subset of
features from Java and Python and present these features in a concise semantic
model.

More specifically, DECAF will support core object-oriented functionalities, such as
inheritance and polymorphism. Additionally, DECAF will present flexible and robust
built-in data structures, such as Python’s list and tuple structures, which did not exist
natively in Java.

2. Data Types

i. Primitives
DECAF supports a variety of different basic primitive types, allowing its programs to be
versatile.

Type Description Use Cases

bool Boolean type; can either be
true or false

Used to indicate a conditional statement
that can be true or false.

int Integer with 32-bit (4 byte)
capacity

Used to store base ten integers ranging
from -231 to 231 - 1.

float Floating point with 64-bit (8
byte) capacity

Can store decimals or integers greater
than the range int can handle.

char Represents a single ASCII
character; size is 1 byte

Can be used to represent a character or
text as a sequence of characters.

ii. Literals
Literals are syntactic representations of fixed values for primitive types. They are the
actual representation of values in the program, as opposed to being hidden within an
identifier.

2

Type Syntax Example

bool Only two possible values: true, false true, false

int A sequence of digits, may be
preceded by - to indicate negativity

4115, -325409

float Typed as decimal fractions, may be
preceded by - to denote negativity

0.25, -534.2908

char

A single character enclosed by single
quotes (‘’)
Refer to the following table for
escape sequences

‘a’, ‘K’

string Sequence of characters enclosed by
double quotes (“”)

“Hello World”

list
Mutable sequence of expressions
separated by commas enclosed by
brackets ([])

[1, 2, 3, 4]

tuples
Immutable sequence of expressions
separated by commas enclosed by
parentheses (())

(1, 2, 3)

Escape Sequences:

Syntax Meaning

‘\0’ null character

‘\\’ backslash

‘\’’ Single quote

‘\”’ double quote

‘\n’ newline character

‘\t’ tab character

‘\r’ carriage return

3

Example:

string str = “William says:\t\”Hello!\”\n”
print(str @ “The End”);

Expected Output:
William says: “Hello!”
The End

iii. Built-ins: Strings
Strings are immutable sequences of characters.

strin
g

Represents a sequence of
characters; size is variable

Used to represent text.

String Operations

A string in DECAF can be thought of as an immutable list of chars (see Built-Ins: Lists).
The operations that can be performed on a string are identical to those that can be
performed on a list. However, in the case of mutation operators, such as ::, @, and ~,
a copy of the string is returned and the original string operated on is unchanged.

Operation Effect

[] Returns the character at a given index in the string (as a string).

[:] Returns a substring (as a copy) denoted by the indices given.
Includes the initial index and excludes the second index.

:: Returns a copy of the string with a single character appended.

@ Returns a copy of the string concatenated with another string.

~ Returns a copy of the string with the specified substring deleted.

4

iv. Built-ins: Lists

Lists are mutable sequences, which can be changed after they are created. The items
of a list are arbitrary objects of the same type (see object hierarchy and
polymorphism), built-ins of the same type, or primitives of the same type. Lists are
created by placing a comma-separated list of expressions in square brackets. Empty
lists are simply represented by square brackets without any expression in between.

List Operations

Operation Effect

[] Index into the list.

[:] Slices and returns a subsequence (as a copy) denoted by the indices
given. Includes the initial index and excludes the second index.

:: Append a single value to the list.

@ Append a list to another list.

~ Delete a subsequence of the list.

List Keywords

Keyword Meaning

in Used to iterate through a list.

Example:

int[] empty = [];
int[] nums = [1,2,3,4,5];
nums::0;
int[] negs = [-1,-2,-3,-4,-5];
nums@negs;

int[] extracted = nums[0:5];

~nums[0];
~nums[0:2];

//empty list
//list creation
//nums is now [1,2,3,4,5,0]

//nums is now
[1,2,3,4,5,0,-1,-2,-3,-4,-5]
//extracted is [1,2,3,4,5], excludes
index 5
//slicing does not modify the
underlying list
//deletes the 0th index
//delete indices 0 through 2

5

List Comprehension

DECAF provides a syntactic construct for creating a list based on existing lists. For
example,

int[] numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
int[] doubled_evens = [n * 2 for n in numbers if n % 2 === 0];

v. Built-ins: Tuples
Tuples are immutable sequences that cannot be changed once created. The items of a
tuple are primitives, built-ins, or objects of the same type. Tuples of two or more
items are formed by comma-separated list of expressions. A tuple of one item can be
formed by affixing a comma to an expression; an empty tuple can be formed by an
empty pair of parentheses.

Tuple Operations

Operation Effect

[] Index into the tuple.

Tuple Keywords

Keyword Meaning

in Used to iterate through a tuple.

Example:

int() empty = ();
int() tup = (1,2);
int() single = (1,);
int val = single[0];

//empty tuple
//tuple creation
//single element creation
//val is 1

vi. Built-in Libraries
DECAF has a set of standard libraries for its built-in types: lists, tuples, and strings.
This set of libraries are automatically imported upon program start.

6

String Built-in Methods

Method Header Description

capitalize(string param) -> string Returns a copy of the string with
the first letter capitalized.

is_alpha(string param) -> bool
Returns true if string has at least 1
character and all characters are
alphabetic and false otherwise.

is_digit(string param) -> bool Returns true if string contains only
digits and false otherwise.

is_alnum(string param) -> bool
Returns true if string has at least 1
character and all characters are
alphanumeric and false otherwise.

lower(string param) -> string Returns a copy of the string in all
lower case.

upper(string param) -> string Returns a copy of the string in all
upper case.

replace(string param, string old,
string new) -> string

Returns a new string such that all
occurrences of old in param with
new.

length(string param) -> int Returns the number of characters
of the given string.

print(string param) Prints the string to the console.

to_list(string s) -> <char>[] Returns the given string as a list of
characters.

7

List Built-in Methods

Method Header Description

length(<type>[] param) -> int Returns the number of elements of the
given list.

reverse(<type>[] param) ->
<type>[] Returns a reversed copy of the given list.

max(<type>[] param) -> <type>
Returns the item from the list with max
value. Defined only for lists of primitive
types.

min(<type>[] param) -> <type>
Returns the item from the list with min
value. Defined only for lists of primitive
types.

to_tuple(<type>[] param) ->
<type>() Returns the given list as a tuple.

Tuple Built-in Methods

Method Header Description

length(<type>() param) -> int Returns the length of the given tuple.

reverse(<type>() param) ->
<type>()

Returns a reversed copy of the given
tuple.

max(<type>() param) -> <type>
Returns the item from the tuple with max
value. Defined only for tuples of primitive
types.

min(<type>() param) -> <type>
Returns the item from the tuple with min
value. Defined only for tuples of primitive
types.

to_list(<type>[] param) ->
<type>[] Returns the given tuple as a list.

8

vii. Objects
DECAF is an object-oriented programming language, so it supports the implementation
of objects, which are entities that have state and behavior. While DECAF has the
capability of being object-oriented, it does not have many built-in object classes.
Thus, it is left to the programmer’s discretion to use this feature as they please.

Object classes can extend other classes, or they can implement an already defined
interface. Their state and behavior are defined by listing out characteristic fields and
methods in a class declaration.

Fields

Fields can consist of primitive data types or other object classes, and methods can
return primitives or objects. Fields can be accessed and modified using dot (.)
operator. A field can be accessed by the following format: obj.field

Methods

Object methods can be defined by the user within the class. They typically perform an
operation on the instance it is invoked upon and can modify the state of the object. A
method can be called by using the dot (.) operator in the following format:
obj.method(). In DECAF, the programmer is given the ability to write whatever
methods they may require, utilizing the various built-in data types and operators.

Methods are operations performed on an object that can accept input as parameters
and produce output. These inputs and outputs can be primitives, objects, or built-ins.
The method signature determines the formal parameters, including the number of
arguments, their type, and their order. A calling method must match this signature in
order to make a valid call to the method.

Methods can be overloaded and overridden. Method overloading is the usage of
methods of the same name with different method signatures. If an overloaded method
is called, it will call the method that matches the types of the arguments passed in.
Method overriding is described in the Object Hierarchy and Polymorphism section.

Return Types

In the method signature, the return type of a method is specified by the type following
the -> symbol. Returning from a method is indicated by the return keyword followed
by the primitive or object to return. The type that is returned must match that of the
method signature. If a method does not return anything, the -> should be omitted and

9

the return can be omitted (although it can still be used to prematurely exit a
method).

The format of a method is as follows:

method_name(param1_type param1_name, ... , paramn_type paramn_name) ->
return_type {
 ...
 return some_value;
}

Examples:

// Method that returns int
gcd(int x, int y) -> int {
 if (y === 0) {
 return x;
 }
 return gcd(y, x % y);
}

// Method that returns nothing
foo(string print_me) {
 print(print_me);
}

class Square {
 int length;

 Square(int length) {
 self.length = length;
 }
}

// Method that returns Square object if x is true, returns null
// otherwise
bar(bool x) -> Square {
 if (x) {
 return Square(5);
 }

 return null;
}

10

Instantiation

Objects are instantiated using the object’s constructor method. The name of a
constructor has to match the class name. Constructors require no return values but
implicitly return the object just instantiated to the calling method.

Objects can be assigned to variables once they have been instantiated. The keyword
null can be used to represent a nonexistent object.

Classes

A class is the template for an object which can be instantiated. A class is capable of
providing concrete implementations for interfaces, extending the functionality of
another class, or being extended to subclasses. Classes have state, represented by
fields, and behavior, represented by the methods that can be invoked.

Interfaces

An interface is a set of method declarations designed to be implemented by classes.
An interface can declare any number of methods and define any number of constants,
however it cannot define instance variables or constructor methods. As such interfaces
cannot be instantiated and do not contain constructor methods.

Object Hierarchy and Polymorphism

Objects have the concept of subclasses that extend superclasses and implement
interfaces. The core purpose of the object-oriented model is that subclasses will
inherit the fields and methods of superclasses. That is, a subinterface can extend
superinterface to provide additional methods and constants. A subclass will inherit all
of the fields and methods of its superclass. Furthermore, it can override methods in
superclasses to provide its own implementation as well as add new fields and methods.
DECAF supports single inheritance rather than multiple inheritance, so a subclass can
extend at most a single superclass.

Objects are able to take on many forms, that is, a superclass reference can be used to
refer to a subclass object. This ability is commonly referred to as polymorphism.

11

Object Keywords

Keyword Description

class Demarcates a class definition.

interface Indicates that a class is an interface.

implements Indicates that a class implements an interface.

extends Indicates that a class extends another class.

super Similar to Java’s super keyword, it accesses overridden methods
in the superclass.

self Similar to this in Java, which refers to the object in the current
context.

null Represents a typeless nonexistent object.

Object Operations

Operator Description

Object() Instantiates an object.

o.f Accesses a field f in the object o.

o.m() Invokes method m on the object o.

The class definition follows the following format:

class class_name [extends [class_1, …]] [implements [interface_1, …]] {
 ...
}

12

Examples:

// Basic class declaration
class MyClass {
 ...
}

// Example of extending a class
class Mammal extends Animal {
 Mammal(string species) {
 super(species); // Calls constructor of superclass
 }
 ...
}

// Interface declaration
interface Shape {
 ...
}

// Example of implementing an interface
class TwoDShape implements Shape {
 ...
}

class Rectangle extends TwoDShape {
 int length;
 int width;

 Rectangle(int length, int width) {
 self.length = length; // self refers to its own fields
 self.width = width;
 }

 ...

 perimeter() -> int {
 return length * width;
 }
}

class Square extends Rectangle {

 Square(int sideLength) {
 // Calls constructor of superclass
 super(sideLength, sideLength);
 }

 ...
}

13

Exceptions

Exceptions are special built-in objects that are thrown automatically when some
violation occurs during runtime that may not have been caught during compilation.
These exceptions must be handled by the code using a try-catch-finally block,
otherwise the program will exit with a failure. The programmer can also manually
throw exceptions within their code using the keyword throw.

When an exception is thrown and is wrapped in a try block, it will be handled by the
subsequent catch clause with the matching exception type. If the exception is thrown
and is not wrapped in a try-catch block or does not have a catch clause to handle that
type of exception, it will prematurely exit from the current method and throw the
exception up the call stack to the calling method. The finally clause is unconditionally
executed at the end of the try-catch regardless of whether the statements in the try
block executed successfully or not.

DECAF has several exceptions automatically built into it. The following exceptions are
supported:

● NullPointerException
● IndexOutOfBoundsException
● DivideByZeroException

The format for throwing an exception is as follows:

throw <ExceptionName>

Example:

int test_0 = 1000;
int test_1 = test_0 - 1000;
int test_2 = test_0 / test_1;

// test_1 is effectively 0
// DivideByZeroException thrown

try {
 Object o = null;
 o.nonexistent_method();
 return 0;
}
catch (NullPointerException e) {
 print(“Nonexistent method”);
}
finally {
 print(“done”);
}

// code block to attempt

// catching NullPointerException

// this block will always execute

14

viii. Casting
Casting must be explicit by using the <type> operator. Promotion is not supported. For
instance, if a user want to perform arithmetic operations on a float and an integer,
they must choose to cast one of the two operands so that they have matching types.

The following casts are supported:

● int -> float
● int -> string
● int -> bool (0 becomes false, nonzero become true)
● float -> int (the fractional portion will be truncated)
● float -> string
● float -> bool
● char -> string
● bool -> int (true becomes 1, false becomes 0)

int x = 3;
float y = 1.0;
int z = x + y; //error

int x = 3;
float y = 1.0;
int z = x + <int> y; //ok

3. Lexical Conventions

i. Identifiers
Identifiers are sequences of characters used for naming variables, new objects and
methods. Identifiers can contain ASCII characters, digits and underscore ‘_’. The first
character can only be a character or underscore. An identifier cannot have collisions
with other keywords or names of built-in methods.

By convention, ‘_’, rather than camelCase, is used for the readability of long
identifiers.

ii. Comments
Comments in DECAF are demarcated using Java-like syntax, and do not affect
compilation. Comments cannot be nested.

15

Syntax Description

// comment Used for single-line comments.

/*
 comment
 comment
*/

Used for multiline comments.

iii. Keywords
The following keywords are reserved in DECAF and may not be used otherwise:

main const int float

char string bool list

tuples in class interface

implements extends super self

null and or not

if elseif else for

while break continue return

try except finally throw

16

iv. Operators
DECAF can perform arithmetic, logical, and boolean operations. These different types
of operators can be used in combination to create powerful methods and logic.

Arithmetic Operators

Operator Description

+ Sums the operands together.

- Subtracts the right operand from the left operand.

* Multiplies the operands together.

/ Divides the left operand by the right operand.

% Performs modulus division of the left operand using
the right operand.

Boolean Operators

Operator Description

and Returns true when both operands evaluate to true; returns
false otherwise.

or Returns true if either or both of the operands evaluate to
true; return false otherwise.

not Negates the boolean value of the operand.

17

Comparison Operators

Operator Description

== Compares the two operands’ references; returns true
when they are referentially equal, false otherwise.

=== Compares two operands’ values; returns true when
they are equal in terms of value, false otherwise.

!= Compares the two operands’ references; returns true
when they are value-wise not equal, false otherwise.

!== Compares two operands’ values; returns true when
they are referentially not equal, false otherwise.

< Returns true if the left operand is less than the right
operand, false otherwise.

> Returns true if the left operand is greater than the
right operand, false otherwise.

<= Returns true if the left operand is less than or equal to
the right operand, false otherwise.

>= Returns true if the left operand is greater than or
equal to the right operand, false otherwise.

List and Tuple Operators

Operator Description

[] Used to index into lists and tuples.

[:] Slices and returns the subsequence in a list denoted by the indices
given. Includes the initial index and excludes the second index.

:: Append a single value to the list.

@ Append a list to another list.

~ Delete subsequences of the list.

18

String Operations

Operation Effect

[] Returns the character at a given index in the string (as a string).

[:] Returns a substring (as a copy) denoted by the indices given.
Includes the initial index and excludes the second index.

:: Returns a copy of the string with a single character appended.

@ Returns a copy of the string concatenated with another string.

~ Returns a copy of the string with the specified substring deleted.

Example:

int a = 100;
int z = 2;
float f = 50.3892;
char ch = ‘a’;
bool valid = true;
bool not_valid = false;
string str1 = “sample program”;
string str2 = “this is a”;
float[] vals = [];

int b = 5 + a * z;
if (<float> b > f) {
 vals::b;
 print(“b is big\n”);
}
if (valid and not_valid) {
 print(“both true\n”);
}
print(str2 @ str1);

// sample declarations

// b has the value of 205
// evaluates to true
// adds b to vals.
// prints “b is big\n”

// and operation evaluates to false

// prints “this is a sample program”

19

v. Precedence and Associativity Rules
A majority of the operators in DECAF are left-associative. This means that consecutive
operations with the same precedence will be evaluated from left-to-right.

Operator Description Level Associativity

.
[]
[:]

f(args…)

Access object member
Access list element
List slicing
Invoke a method

1 Left

+
-
not

Unary plus
Unary minus
Logical NOT

2 Right

<> Casting 3 Right

*
/
%

Multiplicative 4 Left

+ - Additive 5 Left

::
~

Append value to a list
Remove value from a
list

6 Right

@ List concatenation 7 Right

< <=
> >= Relational type 8 Left

==
===
!=
!==

Referential equality
Value equality
Referential not equals
Value not equals

9 Left

and Conditional AND 10 Left

or Condition OR 11 Left

= Assignment 12 Right

20

vi. Brackets
Brackets are symbols that occur in pairs. They are used to separate blocks of code
from each other and to alter default precedence in expressions. The scope of a
variable is determined by the outermost brackets in which it is enclosed.

Bracket
Type Usage Example

{ } Used to denote control flow,
methods, and classes.

main() -> int {
 print(“Hello
world!\n”);
}

()
Used in a variety of situations;
such as conditionals, grouping,
for loops, tuple instantiation.

if (x < 5) {
 ...
}

[] Utilized in List operations (see
Lists / Tuples).

numbers = [1, 2, 3, 4, 5,
6, 7, 8, 9, 10];

< >

Denotes type that operand
should be cast to. The type is
put between the angle
brackets.

num = <int> 16.0

vii. White Space
Aside from its function to separate tokens, white space (including ASCII SP, HT, FF,
and new line characters) is ignored. Developers can use them freely for code
readability.

4. Statements

i. Declarations
Each identifier must be associated with a type. A declaration is a statement which
introduces an identifier into the program and specifies its type. If a variable is not
initialized at its declaration time, it will be given a default value. The default value is

21

0 for a number, false for a boolean, empty for built-ins (strings, lists and tuples) and
null for an object.

string str = “hello world”;

Constants
Constants are variables whose value cannot be changed, and must be declared with
the keyword const. The variable name should be in all capital letters. The variable can
be reassigned but the value is immutable.

const int PI = 3.14;

const int[] IMMUTABLE_LIST = [1, 2, 3]; // cannot modify list

ii. Expressions
Adding a semicolon to the end of an expression makes it a statement. When executed,
the expression is evaluated.

iii. Control Flow
main

The main method is the start point for execution of the program. Main is the only
method that does not need to be defined within a class and exists within the global
scope. It takes as parameter the arguments given when the program is run and returns
an int representing the return code of the program. By convention, a return value of 0
indicates successful termination whereas a nonzero return value indicates failure.
If a file contains multiple main methods, only the first one will be executed.

// Main method
main(string[] args) -> int {
 ...
 return 0;
}

22

if/elseif/else

The most basic element of control flow structures is the if-elseif-else statement,
which. In DECAF, at bare minimum an if statement is necessary. else is used to
indicate what should be done if the conditional is not met. elseif denotes other
possible conditions that the scenario may fall into and executes the respective code.
The conditions for decision-making must be boolean values, i.e. true or false.

The format of an if-elseif-else statement is as follows:

if (condition) {
 ...
}
elseif (condition) {
 ...
}
else {
 ...
}

Example:

if (x < 150) {
 print(“short”);
}
elseif (x < 180) {
 print(“medium”);
}
else {
 print(“tall”);
}

for loop

The for loop is the most basic loop that enables code to run iteratively. It requires the
initialization of some control variable, a range of values at which the control variable
should allow the loop to execute, and an expression indicating how the control
variable’s value should change in between iterations. Failure to provide an expression
that alters the control variable’s value will result in an infinite loop, which will cause
the system to hang.

The format for a for loop is as follows:

for (initialization; terminating condition; iteration) {
 ...
}

23

Example:

int n = 0;
for (int i = 0; i < 10; i = i + 1) {
 n = n + i;
}

while loop

The while loop is the for loop’s more sophisticated cousin. It is controlled by a
conditional statement that is dependent on the control variable’s value. The control
variable’s value must be altered in the body of the loop in order to avoid getting stuck
in an infinite loop.

The format of a while loop is as follows:

while (condition) {
 ...
}

Example:

int x = 5;
int y = 1;
while (x > 1) {
 y = y * x;
 x = x - 1;
}

break
break is used to indicate when a loop should stop and exit early. It is used within a
“for” or “while” loop. If there are nested looping statements, it terminates the
execution of the loop whose scope that it is immediately nested within.

continue
continue is used to skip the remaining statements not yet executed in the current
iteration of the loop, and begins the next iteration of the loop. If there are nested
looping statements, it affects the loop whose scope it is immediately nested within.

24

Example:

for (i = 0; i < 6; i = i + 1) {
 if (i === 3) {
 continue;
 }
 elseif (i === 5) {
 print(“break at 5\n”);
 break;
 }
 print(“i is “ @ <string> i @
“\n”);
}

Expected output:
i is 0
i is 1
i is 2
i is 4
break at 5

return

return exits the method and returns the primitive, built-in, or object specified
following it to the calling method. If a method does not return anything, the return
statement can be omitted. In all other cases, it is required.

5. Sample Executable
The following sample code is meant to simulate an interactive zoo of sorts.

class Animal {
 string name;
 string noise;
 int num_feet;

 Animal(string name, string noise, int num_feet) {
 self.name = name;
 self.noise = noise;
 self.num_feet = num_feet;
 }

 listen() -> string {
 return name @ “ goes ” @ noise;
 }

 get_name() -> string {
 return name;
 }

25

 get_feet() -> int {
 return num_feet;
 }
}

main(string args[]) -> int {
 Animal[] zoo = [];
 Animal duck = Animal(“Don”, “QUACK”, 2);
 Animal cow = Animal(“Carla”, “MOO”, 4);
 Animal dog = Animal(“Charlie”, “WOOF”, 3);
 int counter = 0;

 // add animals to the zoo list
 zoo :: duck;
 zoo :: cow;
 zoo :: dog;

 print(“Who has the most feet?\n”);

 // iterate through all the animals to determine this
 for (Animal a in zoo) {
 if (a.get_feet() > max_feet) {
 the_one = a;
 max_feet = a.get_feet();
 }
 }
 print(the_one.get_name() @ “ does!”);
 print(“ They have “ @ <string> the_one.get_feet() @ “ feet.\n”);

 // loop control flow demonstration
 print(“The duck wants attention.\n”);
 for (i = 0; i < 5; i = i + 1) {
 print(duck.listen() @ “\n”);
 }
 print(“Please send help.\n”);

 return 0;
}

26

