
C+	Language	Reference	Manual	
By	Alexander	Stein	&	Eric	Johnson	

Columbia	University	
Dr.	Stephen	A.	Edwards	
COMS	W4115	S2017	–	Programming	Langagues	&	Translators	

Identifiers	
	
In	CPlus,	identifiers	are	combinations	of	characters,	numbers,	and	the	special	character	‘_’;	they	
must	begin	with	a	letter,	and	they	are	case-sensitive.	There	are	two	types	of	identifiers:	
	

(1) Value	and	Function	Identifiers:		these	must	begin	with	a	lower-case	letter;	they	
represent	variable	values	of	all	datatypes	as	well	as	function	names.	Defined	formally	as	

['a'-'z']['a'-'z' 'A'-'Z' '0'-'9' '_']*
	

(2) Struct	Identifiers:	these	must	begin	with	a	capital	letter;	they	represent	globally-defined	
structure	types,	used	to	group	several	datatypes	into	a	single	record.	Defined	formally		

['A'-'Z']['a'-'z' 'A'-'Z' '0'-'9' '_']*

Keywords	
	
The	reserved	keywords	in	CPlus	include	types,	control	flow	indicators,	and	built-in	functions:	
	
if else for while return
int char size_t string char
bool void true false sizeof
struct NULL printf atoi strdup
printb print printbig malloc free

Literals	
	
Literals	are	the	primitive	values	which	represent	the	core	data	of	any	language,	in	this	language	
there	are	only	five	
	

1 Integer	Literals:	Any	combination	of	one	or	more	numerals	-	['0'-'9']+
2 Character	Literals:	Any	ASCII	Character,	including	all	specials	- ['\x00'-'\x7F']
3 Boolean	Literals	:	Either	of	true or	false.
4 String	Literals:	Any	combination	of	characters	found	between	“”	marks;	with	supported	

escape	sequences:	
\	-	escape	character	
\b	–	backspace	character	

\n	–	newline	character	
\f	–	form	feed	
\r	–	carriage	return	
\t	–	tab	character	

5 Separators:	Used	to	help	build	the	abstract	syntax	tree	and	determine	semantics,	
discarded	after	parsing;	in	this	language	we	use:	

‘(‘	–	LPAREN	
‘)’	–	RPAREN	
‘{‘	–	LBRACE	
‘}’	–	RBRACE	
‘[‘	–	LSQUARE	
‘]’	–	RSQUARE	
‘;’	–	SEMI	
‘,’	–	COMMA	
‘/*’	–	open	comment	
‘*/’	–	close	comment	

Operators	
	
There	are	three	categories	of	operators	in	CPlus,	which	dictate	all	the	mathematical,	memory-
access,	and	other	logical	functionality	of	the	language:	
	

(1) Binary	Operators	:	these	operate	on	two	expressions,	and	the	order	of	which	
expression	is	on	the	left	or	right	is	significant	
	 +	 addition	of	two	signed	32-bit	integers	–	returns	32-bit	int	
	 -	 subtraction	of	two	signed	32-bit	integers	–	returns	32-bit	int	
	 *	 multiplication	of	two	signed	32-bit	integers	–	returns	32-bit	int	
	 /	 division	of	two	signed	32-bit	integers	–	returns	32-bit	int	
	 %	 modulus	of	two	signed	32-bit	integers	–	retruns	32-bit	int	
	 ==	 physical	equality	of	two	primitive	literals	of	same	type	–	returns	bool	
	 !=	 physical	inequality	of	two	primitive	literals	of	same	type	–	returns	bool	
	 <	 less	than	of	two	32-bit	integers	–	returns	bool	
	 <=	 less-than-equal-to	of	two	32-bit	integers	–	returns	bool	
	 >	 greater	than	of	two	32-bit	integers	–	returns	bool	
	 >=	 greater-than-equal-to	of	two	32-bit	integers	–	returns	bool	
	 &&	 logical	AND	of	two	bools	–	returns	bool	
	 ||	 logical	OR	of	two	bools	–	returns	bool	
	 	

(2) Unary	Operators	:	these	operate	on	a	single	expression,	and	significance	is	placed	on	
whether	the	operator	comes	before	(prefix)	or	after	(postfix)	the	expression	

- 	 Applied	before	integer,	makes	it	negative	(cannot	be	chained	together)	
!	 Applied	after	bool,	inverts	its	value	
++		 Applied	before	or	after	integer,	increases	its	value	by	one	
--	 Applied	before	or	after	integer,	decrements	its	value	by	one	

*	 Applied	before	an	identifier,	retrieves	its	value	from	memory	
&	 Applied	before	an	identifier,	returns	its	memory	address	
->	 Applied	after	struct	identifier,	retrieve	struct	from	mem	and	get	member	
.	 Applied	after	struct		identifier,	get	member	

(3) Assignment	Operators	:	these	operate	an	two	expressions,	the	lefthand	of	which	
must	evaluate	to	an	lvalue	and	the	righthand	of	which	must	evaluate	to	an	rvalue.	
We	have	only	implemented	two	for	our	simple	purposes	

=	 store	rvalue	at	the	address	lvalue	
%=	 lvalue	must	point	to	an	integer,	performs	‘m[lvalue]	=	m[lvalue]	%	rvalue’	

	
Operator	Precedence	&	Associativity	
	
In	decreasing	order	from	top	to	bottom:	
	
OPERATORS	 ASSOCIATIVITY	
*	&	SIZEOF	()		 Right-to-left	
()	[]	.	->	++	--	(POSTFIX)	 Left-to-right	
!	++	--		-	(PREFIX)	 Right-to-left	
()	(CAST)	 Right-to-left	
*	/	%	 Left-to-right	
+	-		 Left-to-right	
<	>	<=	>=	 Left-to-right	
==	!=	 Left-to-right	
&&	 Left-to-right	
||	 Left-to-right	
=	%=	 Right-to-left	
	

Data	Types	
	
The	data,	this	is	the	good	stuff.		What	can	we	store,	manipulate,	understand?		There	are	8	
datatypes	in	CPlus,	six	of	which	are	primitive,	and	two	of	which	are	complex	
	
	 Int	 	 32-bit	integer	
	 Size_t	 	 64-bit	integer	
	 Bool	 	 Boolean	values	true	or	false	
	 Char	 	 any	of	the	asci	values	described	as	charlit	above	
	 String	 	 any	string	between	two	“”	quotes	described	above	
	 Void	 	 The	type	we	return	when	we	don’t	want	to	return	anything	
	 Struct(ID)	 A	struct	with	the	name	ID,	cannot	exist	without	ID	
	 Pointer(typ)	 A	pointer	to	any	of	the	above	datatypes	
	

It	is	worth	noting	that	we	have	implemented	arrays	in	CPlus,	but	have	done	so	using	pointers	
under	the	hood,	instead	of	defining	an	explicit	array	type.	
	
	
	

Declarations	
	
CPlus	requires	that	–	inside	of	a	function	–	all	declarations	(even	with	initializers)	for	any	
variable	used	later	on	in	that	function	must	take	place	first,	before	any	operations.		
Declarations	are	explicitly	defined	in	the	Context	Free	Grammar	section,	and	are	summarized	
below:	
	

(1) Literal	Variables:	Datatype	followed	by	Value	Identifier.	Cannot	directly	declare	a	void	
variable.		Legal	variable	declarations	look	like	this:	
	

int	a;	bool	b;	char	c;	string	d;	Node	n;	Edge	e;	
	

(2) Functions:	Datatype	followed	by	Function	Identifier	followed	by	LBRACE	function-body	
RBRACE.		Datatype	can	be	either	primitive	or	complex.		Legal	function	declarations	look	
like	this:	
	

int	x	{	…	}	
bool*	{	…	}		
Node**	{	…	}	–	where	Node	was	previously	defined	as	a	struct	
	

(3) Structures:		struct	keyword	followed	by	a	Struct	Identifier	then	LBRACE	struct-body	
RBRACE	SEMI.		Note	that	the	struct	body	can	only	contain	un-initialized	Literal	Variable	
declarations.		Legal	struct	declarations	look	like	this:	
	

struct	Node	{	
	 int	x;	
	 char*	y;	
	 Edge	z;	/*	previously	declared	struct	Edge	*/	
};	

	
(4) Pointers:	Datatype	followed	by	*	followed	by	Value	Identifier.	Can	chain	multiple	*	

together	in	a	single	declaration.	Legal	pointer	declarations	look	like	this:	
	

int*	x;	
bool**	y;	
Node*	np;	

	

(5) Arrays:	Arrays	are	not	explicit	datatypes,	and	they	resolve	to	pointers	when	referenced.	
They	do,	however,	have	their	own	declarations	as	syntactic	sugar.		Datatype	–	possibly	
complex	–	followed	by	Value	Identifier	the	RSQUARE	integer-literal	LSQUARE.		The	
integer-literal	must	be	greater	than	0	and	is	not	optional.	Variable	length	arrays	are	not	
supported.		Legal	array	declarations	look	like	this:	
	

int	a[10];	
bool*	b[10];	
Node*	nodeIndices[100];	

	
(6) Initialization:	With	the	exception	of	structs	and	arrays,	all	of	the	above	declarations	can	

optionally	come	paired	with	initializers.	Furthermore,	declarations	of	the	same	type	can	
be	chained	together	in	a	list	through	commas.		Memory	allocation	is	also	possible	in	the	
initialization	of	a	declaration.		Legal	initializations	for	declarations	look	like	this:	

	
int	x	=	5;	
int	y	=	(300	*	21	+	4)	/	2;	
int*x	=	(int*)	malloc(20*sizeof(int));	/*	defacto	20-int	array	*/	

	 	 Node*	nodes	=	(Node*)	malloc(sizeof(Node));	
	 	 int	a	=	5	,	b	=	6,	q	=	x	+	1;	
	

Scope	Rules	
	
Standard	static	scoping	rules	apply,	i.e.	it	is	determined	spatially	based	on	position	within	the	
code	at	compile	time.		
	

Context-Free	Grammar	
	
TERMINALS:	in	uppercase	bold	
	
EOF	 Epsilon	 ID	 LPAREN	 RPAREN	
LBRACE	 RBRACE	 COMMA	 STRUCT	 STRUCT_ID	
SEMI	 INT	 SIZE_T	 BOOL	 STRING	
CHAR	 VOID	 TIMES	 LSQUARE	 RSQUARE	
ASSIGN	 RETURN	 IF	 ELSE	 FOR	
WHILE	 MOD_ASSIGN	 OR	 AND	 EQ	
NEQ	 LT	 GT	 GEQ	 LEQ	
NOT	 MINUS	 INC	 DEC	 DOT	
ARROW	 PRINTF	 PRINT	 PRINTB	 PRINTBIG	
MALLOC	 FREE	 STRDUP	 ATOI	 PLUS	
TIMES	 DIVIDE	 MOD	 LITERAL	 STRINGLIT	
CHARLIT	 TRUE	 FALSE	 AMP	 SIZEOF	
NULL	 	 	 	 	
	

	
	
	
	
	
	
nonterminals:	in	lowercase	italics	
	
program	 decls	 declaration	 func_decl	 struct_decl	
typ	 formals_opt	 formal_list	 declaration_list	 stmt_list	
init_declarator_list	 expr	 add_expr	 init_declarator	 stmt	
selection_statement	 iteration_statement	 expr_opt	 assignment_expression	 logical_or_expr	
postfix_expr	 logical_and_expr	 equality_expr	 relational_expr	 add_expr	
unary_expr	 cast_expr	 unary_operator	 postfix_expr	 built_in_expr	
actuals_list_opt	 primary_expr	 actuals_list	 mult_expr	 	
	
	
		
Productions:		
	

program	à	
		decls	EOF		

	
decls	à	

			decls	declaration			
|	decls	func_decl			
|	decls	struct_decl		
|	Epsilon

	
func_decl	à	

			typ	ID	LPAREN	formals_opt	RPAREN	LBRACE	declaration_list	stmt_list	RBRACE	
	
formals_opt	à	

					Epsilon	
		|	formal_list				

	
formal_list	à	

					typ	ID																	
		|	formal_list	COMMA	typ	ID		

	
struct_decl	à	
					 			STRUCT	STRUCT_ID	LBRACE	declaration_list	RBRACE	SEMI	
	
typ	à	

			INT		
		|	SIZE_T		
		|	STRING		
		|	BOOL		
		|	CHAR		

		|	VOID		
		|	STRUCT_ID	
		|	typ	TIMES		

	
declaration_list	à	
						 Epsilon					
		 	|	declaration_list	declaration		
	
declaration	à	
				 typ	init_declarator_list	SEMI		
	
init_declarator	à	

				ID		
		|	ID	LSQUARE	add_expr	RSQUARE		
		|	ID	ASSIGN	expr		

	
init_declarator_list	à	

				init_declarator	
		|	init_declarator_list	COMMA	init_declarator		

	
	
stmt_list	à	
	 					Epsilon	

		|	stmt_list	stmt		
	
stmt	à	

				expr	SEMI		
		|	selection_stmt		
		|	iteration_stmt	
		|	RETURN	SEMI	
		|	RETURN	expr	SEMI	
		|	LBRACE	stmt_list	RBRACE		

	
selection_stmt	à	

				IF	LPAREN	expr	RPAREN	stmt	(%prec	NOELSE)		
	|	IF	LPAREN	expr	RPAREN	stmt	ELSE	stmt	

	
iteration_stmt	à	

				FOR	LPAREN	expr_opt	SEMI	expr	SEMI	expr_opt	RPAREN	stmt	
	|	WHILE	LPAREN	expr	RPAREN	stmt		

	
expr_opt	à	

					Epsilon	
		|	expr	

	
expr	à	
			 		assignment_expr	
	
assignment_operator	à	

			ASSIGN																															
		|	MOD_ASSIGN																								

	
assignment_expr	à	

				logical_or_expr																							
		|	postfix_expr	assignment_operator	expr		

	
logical_or_expr	à	

				logical_and_expr																							
		|	logical_or_expr	OR	logical_and_expr	

	
logical_and_expr	à	

				equality_expr																										
		|	logical_and_expr	AND	equality_expr					

	
equality_expr	à	

				relational_expr																					
		|	equality_expr	EQ	relational_expr						
		|	equality_expr	NEQ	relational_expr		

	
relational_expr	à	

				add_expr																															
		|	relational_expr	LT	add_expr											
		|	relational_expr	GT	add_expr												
		|	relational_expr	LEQ	add_expr											
		|	relational_expr	GEQ	add_expr											

	
cast_expr	à	

				unary_expr																												
		|	LPAREN	typ	RPAREN	cast_expr												

	
unary_operator	à	

				NOT																																					
		|	MINUS																																			

	
unary_expr	à	

				postfix_expr																											
		|	unary_operator	postfix_expr												
		|	INC	postfix_expr																							
		|	DEC	postfix_expr																							

	
postfix_expr	à	

				built_in_expr																																	
		|	postfix_expr	INC																											
		|	postfix_expr	DEC																												
		|	postfix_expr	LPAREN	actuals_list_opt	RPAREN			
		|	postfix_expr	LSQUARE	postfix_expr	RSQUARE					
		|	postfix_expr	DOT	ID																											
		|	postfix_expr	ARROW	ID																								

	
built_in_expr	à	

				primary_expr																																	
		|	PRINTF	LPAREN	actuals_list_opt	RPAREN									
		|	PRINT	LPAREN	actuals_list_opt	RPAREN									
		|	PRINTB		LPAREN	actuals_list_opt	RPAREN						
		|	PRINTBIG	LPAREN	actuals_list_opt	RPAREN					
		|	MALLOC	LPAREN	actuals_list_opt	RPAREN									

		|	FREE	LPAREN	actuals_list_opt	RPAREN											
		|	ATOI	LPAREN	actuals_list_opt	RPAREN											
		|	STRDUP	LPAREN	actuals_list_opt	RPAREN									

	
actuals_list_opt	à	

		Epsilon	
		|	actuals_list																														

	
actuals_list	à	

				expr																																						
		|	actuals_list	COMMA	expr																			

	
add_expr	à	

				mult_expr																														
		|	add_expr	PLUS	mult_expr																
		|	add_expr	MINUS	mult_expr															

	
mult_expr	à	

				cast_expr																														
		|	mult_expr	TIMES	cast_expr														
		|	mult_expr	DIVIDE	cast_expr													
		|	mult_expr	MOD	cast_expr																

	
primary_expr	à	

				LPAREN	expr	RPAREN																					
		|	LITERAL																																
		|	STRINGLIT																													
		|	CHARLIT																																
		|	TRUE																																			
		|	FALSE																																	
		|	ID																																				
		|	AMP	primary_expr																							
		|	TIMES	primary_expr																					
		|	SIZEOF	LPAREN	typ	RPAREN														
		|	NULL																																			

	
	
	
	
	

