
Blis: Better Language for Image Stuff
Language Reference Manual

Programming Languages and Translators, Spring 2017

Abbott, Connor (cwa2112) [System Architect]

Pan, Wendy (wp2213) [Manager]

Qinami, Klint (kq2129) [Language Guru]

Vaccaro, Jason (jhv2111) [Tester]

February 23, 2017

1 Introduction

Blis is a programming language for writing hardware-accelerated 3D rendering pro-
grams. It gives the programmer fine-grained control of the graphics pipeline while
abstracting away the burdensome details of OpenGL. The Blis philosophy is that
OpenGL provides more power and flexibility than some graphics programmers will
ever need. These OpenGL programmers are forced to write boilerplate code and
painfully long programs to accomplish the simplest of tasks. By exposing only
the bare essentials of the graphics pipeline to the programmer, Blis decreases the
number of decisions that a graphics developer has to make. The result is sleek,
novice-friendly code.

With Blis, you can write real-time 3D rendering programs such as 3D model
viewers. You can write shadow maps for rendering dynamic shadows and use render-
to-texture techniques to produce a variety of effects. In short, the idea is that you
can write programs that manipulate Blis’ simplified graphics pipeline.

In particular, writing vertex and fragment shaders is now more convenient.
Rather than having to write shader code in a separate shader language (GLSL),
you can use Blis to write both tasks that run on the GPU and those that run on the
CPU. Consequently, shaders can reuse code from other parts of the program. Uni-
forms, attributes, and textures are registered with shaders by simply passing them
as arguments into user-defined shader functions. Furthermore, loading shaders from
the CPU to GPU is easily accomplished by uploading to a built-in pipeline object.
See the “Parts of the Language” section below for more information about this
pipeline object, which is a central feature of Blis.

Blis has two backends: one for compiling source code to LLVM and another for
compiling to GLSL. The generated LLVM code links to the OpenGL library in order

1

to make calls that access the GPU.

2 Sorts of programs to be written

Rendering is a major subtopic of 3D computer graphics, with many active re-
searchers developing novel techniques for light transport modeling. These researchers
would like to test their new ray tracing, ray casting, and rasterization developments
by actual experimentation. These new methods would be translated into render-
ing programs written in our language. Because these programs would be written
at a higher level of abstraction than OpenGL, they would resemble mathematical
thinking and derivations. Our language would also facilitate users to make larger
tweaks to their programs with fewer lines of code, allowing for a more effective use
of their time in experimentation. Minimizing this transaction cost between research
and code should allow for more development of rendering software overall.

3 Lexical Conventions

For the most part, tokens in Blis are similar to C. The main difference is the extra
keywords added to support vector and matrix types. There are four kinds of tokens:
identifiers, keywords, literals, and expression operators like (,), and *. Blis is a
free-format language, so comments and whitespace are ignored except to separate
tokens.

3.1 Comments

Blis has C-style comments, beginning with /* and ending with */ which do not
nest. C++ style comments, beginning with // and extending to the end of the line,
are also supported.

3.2 Identifiers

An identifier consists of an alphabetic character or underscore followed by a sequence
of letters, digits, and underscores.

3.3 Keywords

The following identifiers are reserved as keywords, and may not be used as identifiers:

• int

• char

• float

• bool

• struct

• return

• break

• continue

• if

2

• else

• for

• while

• true

• false

• out

• inout

• vec2

• vec3

• vec4

• mat2x2

• mat2x3

• mat2x4

• mat3x2

• mat3x3

• mat3x4

• mat4x2

• mat4x3

• mat4x4

• bvec2

• bvec3

• bvec4

• bmat2x2

• bmat2x3

• bmat2x4

• bmat3x2

• bmat3x3

• bmat3x4

• bmat4x2

• bmat4x3

• bmat4x4

• RGBA8

• RGB8

• RG8

• R8

• @vertex

• @fragment

3.4 Literals

3.4.1 Integer Literals

Integer literals consist of a sequence of one or more of the digits 0-9. They will be
interpreted as a decimal number.

3.4.2 Floating Point Literals

A floating-point literal consists of an integer part, a decimal, a fractional part, and
e followed by an optionally signed exponent. Both the integer and fractional parts
consist of a sequence of digits. At least one of the integer and fractional parts must
be present, and at least one of the decimal point and the exponent must be present.
Since Blis only supports single-precision floating point, all floating point constants
are considered single-precision.

3.4.3 Character Literals

A character literal consists of a single character, or a backslash followed by one of ’,
n, r, t, or a sequence of decimal digits that must form a number from 0 to 255 which
represents an ASCII code. ’\’’, ’\n’, ’\r’, and ’\t’ have the usual meanings.

3

3.4.4 Boolean Literals

Boolean literals consist of the two keywords true and false.

3.4.5 String Literals

String literals consist of a series of characters surrounded by ". All the escapes
described in section 3.4.3 are supported, as well as \" to escape a ". String literals
have type char[n], i.e. a fixed-size array of characters where n is the number of
characters. For example, "Hello world" has type char[11]. Unlike C, there is no
extra ’\0’ inserted at the end of the string.

4 Syntax and Semantics

4.1 Basic Types

4.1.1 Integers

Blis supports integers through the int type, which is a 32-bit two’s-complement
signed integer type.

4.1.2 Characters

Blis supports characters through the char type, which is an 8-bit unsigned integer
type.

4.1.3 Floating Point

Blis supports single-precision (32-bit) floating point numbers through the float

type.

4.1.4 Booleans

Blis supports booleans through the bool type. Booleans may only ever be true or
false.

4.2 Vectors and Matrices

To more easily represent position data and color data, Blis supports vectors and
matrices of floating-point numbers with the vec2, vec3, and vec4 builtin types,
as well as matNxM where 2 ≤ N ≤ 4 and 2 ≤ M ≤ 4, similar to GLSL. There is no
mat1xN or matNx1; use the vector types instead. Blis supports the full complement of
matrix-vector multiplication operations on these types as described in section 4.7, as
well as component-wise multiplication and a number of built-in functions described
in section 4.12.

4

Blis also supports vectors and matrices of boolean type, denoted by bvec2,
bmat2x2, etc., which are the result of the comparison operators ==, !=, >, <, >=,
and <= applied to floating-point vectors and matrices. The builtin functions all()

and any() can be used to reduce these types to a single boolean value, so that e.g.
all(foo == bar) checks that all the components of foo and bar are equal.

In addition to the special operators and built-in functions, vecN types have x,
y, z, and w members as appropriate as if they were normal structures, and matNxM

types have xx, xy, yx, etc. Thus, the syntax to access the x component of a vec4

foo is foo.x. This also applies to the boolean vector and matrix types.

4.3 Packed Types

Oftentimes, when handling large amounts of data, we want to store a more compact
representation of the data in order to reduce bandwidth and memory requirements.
For example, color data is often stored using 8 bits per channel since a larger color
depth wouldn’t cause any noticeable increase in quality. Conceptually, each 8-bit
channel represents a luminance value between 0 (minimum luminance) and 1 (max-
imum luminance), with 0 mapping to 0 and 255 mapping to 1. GPU’s even include
special support for packed formats like these, being able to sample from an image
of packed data and convert it on the fly to floating point, or vice versa, quantizing
a floating-point output to a packed format when writing to an image. To support
this use-case, Blis has special packed types such as RGBA8 which are described in
the table below. These types are implicitly convertible to and from the appropriate
vector type (given in the following table), but converting from the vector type to the
packed type will obviously involve some loss of data. The conversion may happen
on the CPU, or for operations involving the GPU, it may happen automatically
through OpenGL.

Packed Type Vector Type Packed to Vector Vector to Packed

RGBA8 vec4 val/255 bmin(max(val, 1), 0) · 255c
RGB8 vec3 val/255 bmin(max(val, 1), 0) · 255c
RG8 vec2 val/255 bmin(max(val, 1), 0) · 255c
R8 float val/255 bmin(max(val, 1), 0) · 255c

4.4 Arrays

Blis supports one and two-dimensional arrays of fixed and variable size. An array of
foo’s is denoted as foo[N], where N is an integer literal, or foo[] for a runtime-sized
array. Arrays nest left-to-right, so that int[3][2] is an array of size 3 of an array
of size 2 of integers. Two-dimensional runtime-sized arrays are denoted by foo[,]

or foo[N,] where N is an integer literal. If the outer dimension is omitted, then
it is sized at runtime as well. The reason for including two-dimensional runtime-
sized arrays explicitly, rather than using foo[][], is that foo[][] is semantically

5

different from foo[,] — a variable of the former type can have inner arrays with
different sizes, while the latter is a two dimensional array where all the inner arrays
must have the same size. The latter type construction, when combined with packed
types, is useful for representing images whose width and height are only known at
runtime; for example, a loadImage() routine would probably return a value of type
RGBA8[,] or RGB8[,].

Although constant values of type foo[,] cannot be constructed directly, values
of type foo[N][M] can be implicitly converted to foo[,] as described in section 4.6.
Arrays of type foo[N] can be constructed by giving a comma-separated list of N

values enclosed by [and]. For example,

vec3[3] bar = [vec3(0., 0., 1.), vec3(0., 1., 0.), vec3(1., 0., 0.)];

Note that, due to implicit conversions, the following would also work:

vec3[] bar = [vec3(0., 0., 1.), vec3(0., 1., 0.), vec3(1., 0., 0.)];

although the resulting bar would have a different type: variable-sized array in-
stead of fixed-size array. However, none of the elements of the list being constructed
can have different types; that is, implicit type conversion doesn’t happen across ar-
ray members. For example, it is illegal to mix vec4 and RGBA8 types within a single
array.

4.5 Structures

Blis supports structures, similar to C, for storing multiple values together. Struc-
tures are declared with a syntax similar to C’s, for example:

struct {

vec3 a;

float[3] b;

} MyStruct;

However, referring to the type MyStruct does not require the struct keyword:

MyStruct foo;

MyStruct makeMyStruct(int a, float[3] b);

This gives the compiler the flexibility to use the struct mechanism internally
to create various built-in types, like vec3, window, etc.

Declaring a structure type implicitly creates a new function with the types of
the members as arguments which creates an instance of the structure, similar to
GLSL. For example, you could create an instance of MyStruct like:

MyStruct foo = MyStruct(

vec3(0., 0., 0.),

6

[0., 0., 1.]

);

Thus, structures and functions share the same namespace.

4.6 Type Conversions

There are a few cases in Blis where one type can be an acceptable substitute for
another, namely, sized vs. unsized arrays and packed types, and the type conversion
happens implicitly. Generally, it is assumed that one type, known through the rest
of the rules, needs to be converted to another type which is also known beforehand;
in cases where this might not be true, the rule to follow is called out explicitly. A
type A can be converted to another type B if:

• A and B are already the same type.

• A is a packed type and B is its corresponding vector type, or vice versa.

• A is of type C [N][M] or C [N,] and B is of type D [N,] or D [,] and C can
be converted to D.

• A is of type C [N] and B is of type D [N] or D [] and C can be converted to
D.

Note that if A and B are both struct types, then for them to be the same
type, they must have the same name; that is, structure equality is by name, not
structural. Also, this relation is not symmetric (for example, float[5] can be
converted to float[] but not vice versa), but it is transitive, and of course it is
reflexive.

There are also the usual explicit type conversions. Similar to GLSL, they use
the function call syntax. Thus, you can do:

float foo = float(42);

float bar = float(true); // returns 1.0

int bar = int(false); // returns 0

The full complement of 6 conversions amongst float, int, and bool is provided
with the usual meaning, except for converting to bool which can be done through
comparing with 0. Also, char can be be converted to int and vice versa, with the
latter reinterpreting the int as unsigned and taking the lowest 8 bits.

4.7 Operators

The operators supported by Blis, taken from GLSL, are:

7

Precendence Operator Class Operators Associativity

1 Parenthetical Grouping () Left to right

2 Array Subscript [] Left to right
Function Call ()

Structure Member .

Postfix Increment/Decrement ++, --

3 Prefix Increment/Decrement ++, -- Right to Left
Unary Operators +, -, ~, !

4 Multiplicative Operators *, /, % Left to Right

5 Additive Binary Operators +, - Left to Right

6 Bit-wise Shift <<, >> Left to Right

7 Relational <, >, <=, >= Left to Right

8 Equality ==, != Left to Right

9 Bitwise And & Left to Right

10 Bitwise Exclusive Or ^ Left to Right

11 Bitwise Inclusive Or | Left to Right

12 Logical And && Left to Right

13 Logical Exclusive Or ^^ Left to Right

14 Logical Inclusive Or || Left to Right

15 Selection ? : Right to Left

16 Assignment = Right to Left
In-place Arithmetic +=, -=, *=,

/=, %=, <<=,
>>=, &=, ^=,
|=

17 Sequencing , Left to Right

The in-place operators a OP= b are defined to be equivalent to a = a OP b.
Evaluation proceeds left to right, and any side effects (for example, incrementing
the lvalue by ++) are evaluated immediately before returning the value.

4.7.1 Vectorized Operators

In addition to their normal operation on floating-point and boolean types, the follow-
ing arithmetic operator classes can operate on vectors in a per-component manner:

• Postfix Increment/Decrement

• Prefix Increment/Decrement

• Unary Operators

• Multiplicative Operators

• Additive Binary Operators

8

• Relational

• Logical And

• Logical Exclusive Or

That is, for example, if a OP b can take an a of type float and b of type bool

and produce a result of type float, then it can also take an a of type vec4 and
b of type bvec4 to produce a result of type vec4, where result.x = a.x OP b.x,
result.y = a.y OP b.y, etc. In addition, if some of the inputs are of scalar types,
then they will automatically be replicated to create a vector of the required size.
Thus, the following is legal:

vec3(1.0, 2.0, 3.0) * 2.0 // returns vec3(2.0, 4.0, 6.0)

but the following is not:

vec3(1.0, 2.0, 3.0) * vec2(1.0, 2.0)

In addition, all of the above operators except for * can operate per-component
on matrices. * only works on matrices of floating-point type, and denotes linear
algebraic matrix-matrix or matrix-vector multiplication. Multiplying a vector by a
matrix is not permitted.

For any of these operators, operands of packed type are immediately expanded
to their corresponding expanded type before considering whether the operation is
allowed or actually doing the operation.

4.7.2 Equality

The equality operators (== and !=) are structural in Blis, meaning that they re-
cursively compare the elements of structures and arrays. The rule for whether two
values A and B can be compared is as follows:

• If A and B are vectors or matrices, then the comparison is done per-component
with the implicit replication described in section 4.7.1, and returns a boolean
vector of the same size as the original vector type.

• If A is a packed type and B is its corresponding vector type, or vice versa, then
the vector type is truncated to the packed type and then compared component-
wise. If the non-packed type is a scalar, it is also automatically replicated.

• If A and B are both packed types, then they are compared per-component. A
and B must both be the same packed type for the equality to succeed.

• A is of type C [N][M] or C [N,] and B is of type D [N,] or D [,], then each
value of type C is compared with the corresponding value of type D and the
result is combined (or’d for == and anded for !=).

9

• If A is of type C [N] and B is of type D [N] or D [], then each value of type C is
compared with the corresponding value of type D and the result is combined.

• If A and B are runtime-sized arrays, and they are both one-dimensional or
two-dimensional, then the elements of A and B are compared and combined,
except when the sizes do not match, in which case the comparison returns
“not equal.”

• If A and B are of the same structure type, then A and B are compared member-
by-member and the result combined appropriately. If one of the comparisons
returns a boolean vector, then the components of the vector are combined
to produce a single boolean as well. Therefore, the return type of structure
comparisons is always a single boolean.

Any situation which does not fall under one of these cases results in a type error.

4.7.3 Lvalues and Assignment

Expressions on the left-hand side of an = must be an lvalue, which must be either
an identifier or one of the following:

• A member access using the . operator where the left-hand side is an lvalue.

• An array dereference using the [] operators where the left-hand side is an
lvalue.

• An lvalue within parentheses.

When assigning a value, the right-hand side must be implicitly convertible to
the left-hand side as defined in section 4.6.

4.8 Statements and Control Flow

A statement in Blis can be:

• A value followed by a semicolon.

• A variable declaration, which consists of the type, followed by a comma-
separated list of identifiers (names), each optionally followed by = and then an
expression initializing the variable.

• A block of statements surrounded by { }

• A break followed by a semicolon.

• A continue followed by a semicolon.

10

• A return followed by an optional value and a semicolon.

• A sequence of statements enclosed in braces.

• An if statement with optional else clause.

• A for loop.

• A while loop.

The syntax and semantics of if, while, and for, break, continue, and return

are the same as C. When the function has a non-void return type, the type of the
expression in the return must be implicitly convertible to the function return type
as defined in section 4.6.

4.9 Functions and Global Variables

Programs in Blis consist of forward function declarations, function definitions, and
global variable declarations. Global variable declarations are the same as local
variable declarations as defined in the last section. Functions in Blis are declared
and defined as they are in C:

int my_cool_function(int a, vec3[3] b);

// ...

// formal parameters must match

int my_cool_function(int a, vec3[3] b) {

// ...

return 42;

}

The body of a function consists of a block of statements as defined in the previous
section.

In addition, formal parameters may have an optional out or inout specifiers,
similar to GLSL. At most one of in or inout can be added before the type of
the formal parameter. Function parameters are always pass-by-value, but if out

is specified, the reverse from the default happens: instead of the actual parameter
being copied into the formal parameter at the beginning of the function, the formal
parameter has an undefined value at the beginning of the function, and is copied to
the actual parameter when returning from the function. inout is like out, except
that the formal parameter is also initialized to the actual parameter at the beginning
of the function, like normal parameters; in some sense, an inout parameter is a
combination of the out and normal parameters. We follow GLSL in specifying that
the order that these copies happen is undefined. In some sense, the behavior of
out and inout is similar to pass-by-reference in that updates inside the function

11

become visible outside, except that aliasing is not supported and so passing the
same argument twice produces different results from what you would expect. For
example, in this snippet:

void my_cool_function(inout int a, inout int b) {

a = 2;

// b still has value 1

b = 3;

}

// ...

int c = 1;

my_cool_function(c, c);

// what is c now?

since the order in which a and b are copied to c after calling my cool function

is undefined, c can be either 2 or 3 at the end.

4.10 Names and Scope

Similar to C, Blis has support for nested scopes. Each block of statements defines
a new inner scope, which contains any bindings from the outer scope which aren’t
hidden by another binding from the inner scope. Variables and functions cannot be
referenced before they are declared. When multiple variables are declared at the
same time in a single statement, the first variable is visible when initializing the
second, the second is available when initializing the first, and so on. Blis does not
support separate linking, so there are no separate storage classes beyond local vs.
global variables.

4.11 GPU specifics

The GPU-specific objects in Blis are shaders, buffers, images, samplers, textures, and
framebuffers. There are two types of shaders, vertex shaders and fragment shaders.
Vertex shaders run first, consuming buffers of vertex attributes to produce trian-
gles that are then split into fragments that are given a color by the fragment shader
which is written out to the framebuffer which collects the final result. Together, the
whole process is encapsulated in the pipeline, which includes the vertex shader, the
fragment shader, and struct members which let users bind resources like samplers
and framebuffers which may be used in the process. Images and buffers are opaque
structures which represent memory local to the GPU arranged in a one-dimensional
or two-dimensional fashion. Images can either be bound to framebuffers or textures.
Textures and samplers are the opposite of framebuffers; they are 2D arrays that can
only be read by the shader. A sampler is a fixed-function piece of hardware which

12

knows how to sample a texture at an arbitrary floating-point location by interpolat-
ing between nearby pixels in the texture using one of a few different interpolation
modes. Each texture may contain one or more images, which represent different
levels of detail or LOD’s.

4.11.1 Shader Entrypoints

To tell Blis that a particular function is meant to be compiled to a shader that
executes on the GPU, it can be given a @fragment or @vertex annotations after the
declaration but before the function body. Shader entrypoints are similar to normal
functions, and they can call the same functions that normal functions can, except
there are a few restrictions on shader entrypoints and any functions called by them:

• Recursion is disallowed. That is, the callgraph of functions called by each
shader entrypoint must not be cyclic.

• Runtime-sized arrays are not allowed.

• Any GPU-specific objects like samplers, images, etc. cannot be created.

• Global variables, as long as they do not contain any GPU-specific types, can
be read, but they cannot be written.

4.11.2 Pipelines

4.12 Builtin Functions

5 Formal Grammar

6 Complete Sample Program

/* Draws a spinning triangle */

mat3 transform;

void generate_transform(float angle) {

transform = mat3(cos(angle), -sin(angle), 0,

sin(angle), cos(angle), 0,

0, 0, 1);

}

/* The vertex shader is responsible for transforming

* triangle vertices into screen space. "color" and

* "pos" are per-vertex inputs, called "attributes" in

* OpenGL. "color" is a per-vertex output that gets

* interpolated across the triangle, called a "varying"

13

* in OpenGL, while "position" is a builtin that

* determines where the triangle is rendered.

*/

void vertex(vec3 color, vec3 pos, out vec4 color_varying, out vec4

position) @vertex {

/* Note that here, we’re pulling in "transform", which was

* declared as a global variable outside the pipeline. This

* is a simple way of passing data that doesn’t change per-vertex

* to the shader. In OpenGL, this would require creating a

* uniform, binding it, and updating it per-draw if it changes.

*/

color_varying = vec4(color, /* alpha */ 1),

position = vec4(transform * pos, /* w coordinate */ 1);

}

/* The fragment shader is responsible for determining

* the color of the "fragment" (potential pixel).

* "color_varying" is a varying input, matched by name with

* "color_varying" from the vertex shader.

*/

void fragment(vec4 color_varying, out vec4 framebuffer) @fragment {

framebuffer = color_varying;

}

/* This creates a pipeline, which includes everything necessary

* to draw some triangles to the framebuffer(s).

*/

pipeline {

/* tell the pipeline what vertex and fragment shaders to use */

@vertex vertex,

@fragment fragment,

/* The "buffer" type is a way to represent data stored on the GPU.

* Buffers cannot be accessed directly, they can only be uploaded

* to or downloaded from. The type of the buffer, "vec3", means that

* data is stored uncompressed in GPU memory as an array of vectors of

* 3 floating point numbers (compare to the framebuffer below). This

* particular buffer is used by the vertex shader as an attribute,

* since the name matches the parameter of the function, which means

* that assigning to this member will bind the buffer to the

* Vertex Array Object (VAO) of the vertex shader in OpenGL terms.

*/

Buffer<vec3> color,

/* similar to the above */

Buffer<vec3> pos,

/* The framebuffer is what accumulates the final

14

* color and depth. RGBA8 indicates that the pixels should

* store their red, green, blue, and alpha as 8-bit integers

* where 0 maps to 0.0 and 255 maps to 1.0, and is part of the

* type.

*/

framebuffer: Framebuffer<RGBA8>

} MyPipeline;

int main() {

MyPipeline my_pipeline;

/* transfer data from the CPU to the GPU */

Buffer<vec3> color, pos;

color.upload([vec3(1.0, 0.0, 0.0),

vec3(0.0, 1.0, 0.0),

vec3(0.0, 0.0, 1.0)]);

pos.upload([vec3(-1.0, -1.0, 0.0),

vec3(1.0, -1.0, 0.0),

vec3(0.0, 1.0, 0.0)];

/* prepare the pipeline */

my_pipeline.color = color;

my_pipeline.pos = pos;

/* this creates a window and the framebuffer for it */

Window my_window = Window(1024, 768, "My Window");

/* tell the pipeline to draw to the window’s framebuffer */

my_pipeline.framebuffer = my_window.framebuffer;

/* main loop */

float angle = 0;

do {

angle += 1.0;

generate_transform(angle);

draw(my_pipeline);

swap_buffers(window);

} while (!should_close(window));

return 0;

}

15

