# Scanning and Parsing 

Stephen A. Edwards

Columbia University

## Fall 2017

## The First Question

How do you represent one of many things?

Compilers should accept many programs; how do we describe which one we want?

## Use continuously varying values?



## Very efficient, but has serious noise issues

Edison Model B Home Cylinder phonograph, 1906

## The ENIAC: Programming with Spaghetti



## Have one symbol per thing?



Works nicely when there are only a few things
Sholes and Glidden Typewriter, E. Remington and Sons, 1874

## Have one symbol per thing?



Not so good when there are many, many things
Nippon Typewriter SH-280, 2268 keys

## Solution：Use a Discrete Combinatorial System

Use combinations of a small number of things to represent （exponentially）many different things．


| ENGLISH SOUNDS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| （9）${ }^{\text {a }}$ | （1） | （－5） | 4： | $\mathrm{G}^{20}$ | CIT |  |
| 亚哏 | －7 | $2{ }^{3}$ | － $\mathrm{E}^{\text {a }}$ | 罭兑 | 閣 | 200 |
| 朢 | （1） | bat | （1）20 |  | LeI | 28 |
| $P^{\circ}$ | b ${ }_{\text {not }}$ | 5 ¢ | 㐌 |  | lik | 9 |
| $\frac{8}{8}$ | 201 | 0 | 5 | ${ }_{3}^{4}$ | A | n3 |
|  |  | (2, (2) | h | 戍做 | Me： | 亩 |



## Every Human Writing System Does This



Hieroglyphics（24＋）


Sanskrit（36）

Mayan（100）



Cuneiform（1000－300）
癸志志之尖二曼保公河

原抢从史㳉軍史曾衛騎右
温以太䄅車暘社晋車将将


Chinese（214－4000）


IBM Selectric（88－96）

SENATVSPOIVUSOVEROMANVS IMPCAESARIDIVINERVAEF NERVAE IRAIANOAVGGERMTDACICOPONTIF MAXIMOTRIBPOEXVHMIVVCOSVIPP ADDECLARANDVMOVANTAEALTIVDINIS MONSETLOCVSIALE SHVSTTECESTVS

Roman（21－26）

## The Second Question

How do you describe only certain combinations?

Compilers should only accept correct programs; how should a compiler check that its input is correct?

## Just List Them?



Gets annoying for large numbers of combinations

## Just List Them?

3 AA-AAAAAAAAAAAA


AAAAAAAAAAAA 4
AAAAAAAAAAAA Class Above AAAAAAAAAAAAACross Movers 1232.8 Wodbine. 423.0239 AAAAAAAAAAAAMiss
AAAAAAAAAAAAA Payters
AAAAAAAAAAAAA Payless $\begin{aligned} & \text { Escorts. } 485-5333\end{aligned}$
AAAAAAAAAAAAAAA
A A A A A A A 700 Lawrenceavw. 256.1600
AAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAA. 699.6700
AAAAAAAAAAAAAAAA
Mannie Zeller 255 DuncanMEilled. 441.9500
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA Cohens
A A A A A A A A Ass A A A A A A A
AAAAAAAAAAAAAAA
Transmissions 285 Oldidingston. 287.0000
A A A A A A A A A A A A
AAAAAAAAAAAAAAA
A A A A A A A A A A A A Abba
AAAAAAAAAAAAAAAAAAAA
AAAAAAAAbba Movers\&
A A A A A A A A A A A A A Storage. 366-0237
AAAAAAAAAAAAAAA
A A A A A A A A A A A A Access
AAAAAAAAAAAAAAA
Mover 64 StClairw. 944 -2018
AAAAAAAAAAAAAAAAAAAA
A A A A A Abba Auto Collisions Glass. 777.9595
AAAAAAAAAAAAAAA
Safe 6083 Yonge . 225-5589
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AA A A A A A Ada 38 Garnforth. 285.6002
AAAAAAAAAAAAAAA
AAAAAAAAAL Law
250 SheppardAvE ...
If Busy Call .................................. 33 sabella.................................222.6311 222.586

## AAAAAAAAAAAAAAA

AA A A A A A A A A A A A A A A A A F Fhe. 499.2144 AAAAAAAAAAAAAAA
A A A A A A A A A A A A A A A A A A A A A 299.668 A A A A A A A A A A A A A A A A A A A A
Action Law 5233 Dundas5w. 253 -0888 AAAAAAAAAAAAAAAAAAAA AllaneAssociates 401 Byy 363.5431 AAAAAAAAAAAAAAAAAAA\& A A A A A A A A A A A A A A A A A Eagle A A A A A A A Alarms 557 DixonRd. 247.0000
AAAAAAAAAAAAAAAAB
Towing 18 Canso. 245-7676

AAAAAAAAAAAAAAAAB
AAAAAAAAAAAMing 18 Canso. 245-7676 Robertson MovingRStorage
Robertson Moving\&Storage 236 Northqueen. 620-1212 AAAAAAAAAAAAAAA AAAAAA Rezz. 652.5252 AAAAAAAAAAAAAAA Access Law. 784-2020 AAAAAAAAAAAAAAA Accident
Accompanying injuries\&Criminal
A A A A A A A A A A A A A A W. 663-2211 A A A A A A A A Claims 2 StClairW. $944-2313$ Ability 2 SheppardAve. 224.0750 A A A A A A A A A A A A A A A Advant. AAAAAAAAAAAAAAA An Executive's Choice. 929.9390 AAAAAAA A A

Etobicoke
A A A A A A A A A A A................ 252-5686
A A A A A A A A A A A A A A A Cross 280 Consumers. 494.9777 AAAAAAAAAA AAAAA Elegant AAAAAAAAAAAAAAA Professional Express System
A A A A A A A A A A A A A A A Sweet $\mathbf{4}$. 5 -9111
 A AAAA AAAA AAAA AAAA Anthony De
Marco 1205 StClainW. $651-2299$ A AAAA AAAA AAAA AAAA Domenic 651.229 Tagliola 1205 StClairW. 651-2299 Available, 465-9191 AAAAAAAAAAAAAAAAAAA A Touch Of AAAAAAAAAAAAAAAAAAAAAAAAAA Class Escort Sering Apple Auto Glass
Apple Auto Glass
No Charge-Dial
1800 506-5665 AAAAAAAAAAAAAAMAMAAAAAAAA Cardinal Custom Bulding 2 2loorW. 966.4728
A A A A A A L L Student Movers. $693-2403$ A A A AAABCO Door Co
1860 Bonhillidd Mississauga
A A A A A A B S Movers
Toronto 748-3667
A A A A A A B Movers LansdowneAv. 588-1499 A AA AABBCCDEF Locksmith
A A A A A B C Movers Inc ${ }^{80}$ StClairE. 922-2255
A A AA A G B Best Movers $\begin{array}{r}6 \text { Columbus. } \\ \hline\end{array}$ AAAAA M O I Moving Systems ...... 503-9321 A A A A 29 . 955 Middlefield. 299-4239 A A A A ABBBEE Locksmiths 900 CaledoniaRd. $787-4964$ A A A ABC Glass Supply 11 Concord... 531-1548 AAAABCO Door\&Window Co
1860 Bonhilild Mississauga Toronto 748-3667

## Can be really redundant

## Choices: CS Research Jargon Generator

Pick one from each column

| an integrated |  | mobile |
| :--- | :--- | :--- |
| a parallel |  | network |
| functional |  | preprocessor |
| a virtual | programmable | compiler |
| an interactive | distributed | system |
| a responsive | logical | interface |
| a synchronized | digital | protocol |
| a balanced | concurrent | architecture |
| a virtual | knowledge-based | database |
| a meta-level | multimedia | algorithm |

E.g., "a responsive knowledge-based preprocessor."

## SClgen: An Automatic CS Paper Generator

# Rooter: A Methodology for the Typical Unif of Access Points and Redundancy 

Jeremy Stribling, Daniel Aguayo and Maxwell Krohn


#### Abstract

Many physicists would agree that, had it not been for congestion control, the evaluation of web browsers might never have occurred. In fact, few hackers worldwide would disagree with the essential unification of voice-over-IP and publicprivate key pair. In order to solve this riddle, we confirm that SMPs can be made stochastic, cacheable, and interposable.


## I. Introduction

Many scholars would agree that, had it not been for active networks, the simulation of Lamport clocks might never have occurred. The notion that end-users synchronize with the investigation of Markov models is rarely outdated. A theoretical grand challenge in theory is the important unification

The rest of this paper is organized as foll we motivate the need for fiber-optic cable work in context with the prior work in tl dress this obstacle, we disprove that even th tauted autonomous algorithm for the constr to-analog converters by Jones [10] is NP-c oriented languages can be made signed, d signed. Along these same lines, to accomplish concentrate our efforts on showing that the fa algorithm for the exploration of robots by S $\Omega((n+\log n))$ time [22]. In the end, we cor
II. Architecture

Our research is principled. Consider the ea by Martin and Smith; our model is similar,

http://loveallthis.tumblr.com/post/506873221

## How about more structured collections of things?

The boy eats hot dogs.
The dog eats ice cream.
Every happy girl eats candy.
A dog eats candy.
The happy happy dog eats hot dogs.


## Lexical Analysis

## Lexical Analysis (Scanning)

Translate a stream of characters to a stream of tokens


## Lexical Analysis

Goal: simplify the job of the parser and reject some wrong programs, e.g.,
\%\#@\$^\#! @\#\%\# \$
is not a C program ${ }^{\dagger}$
Scanners are usually much faster than parsers.
Discard as many irrelevant details as possible (e.g., whitespace, comments).

Parser does not care that the the identifer is
"supercalifragilisticexpialidocious."
Parser rules are only concerned with tokens.
${ }^{\dagger}$ It is what you type when your head hits the keyboard

## Describing Tokens

Alphabet: A finite set of symbols
Examples: $\{0,1$ \}, $\{$ A, B, C, $\ldots, Z$ \}, ASCII, Unicode

String: A finite sequence of symbols from an alphabet
Examples: $\epsilon$ (the empty string), Stephen, $\alpha \beta \gamma$

Language: A set of strings over an alphabet
Examples: $\varnothing$ (the empty language), $\{1,11,111,1111\}$, all English words, strings that start with a letter followed by any sequence of letters and digits

## Operations on Languages

Let $L=\{\epsilon$, wo $\}, M=\{$ man, men $\}$

Concatenation: Strings from one followed by the other
$L M=\{$ man, men, woman, women $\}$

Union: All strings from each language
$L \cup M=\{\epsilon$, wo, man, men $\}$

Kleene Closure: Zero or more concatenations
$M^{*}=\{\epsilon\} \cup M \cup M M \cup M M M \cdots=$
$\{\varepsilon$, man, men, manman, manmen, menman, menmen, manmanman, manmanmen, manmenman, ...\}

## Kleene Closure

"*" is named after Stephen Cole Kleene, the inventor of regular expressions, who pronounced his last name "CLAY-nee."

His son Ken writes "As far as I am aware this pronunciation is incorrect in all known languages. I believe that this novel pronunciation was invented by my father."


## Regular Expressions over an Alphabet $\Sigma$

A standard way to express languages for tokens.

1. $\epsilon$ is a regular expression that denotes $\{\epsilon\}$
2. If $a \in \Sigma, a$ is an RE that denotes $\{a\}$
3. If $r$ and $s$ denote languages $L(r)$ and $L(s)$,

$$
\begin{array}{lll}
(r) \mid(s) & \text { denotes } & L(r) \cup L(s) \\
(r)(s) & & \{t u: t \in L(r), u \in L(s)\} \\
(r)^{*} & & \cup_{i=0}^{\infty} L(r)^{i} \\
& \text { where } & L(r)^{0}=\{\epsilon\} \\
& \text { and } & L(r)^{i}=L(r) L(r)^{i-1}
\end{array}
$$

## Regular Expression Examples

$$
\Sigma=\{a, b\}
$$

## Regexp. Language

| $a \mid b$ | $\{a, b\}$ |
| :--- | :--- |
| $(a \mid b)(a \mid b)$ | $\{a a, a b, b a, b b\}$ |
| $a^{*}$ | $\{\epsilon, a, a a, a a a, a a a a, \ldots\}$ |
| $(a \mid b)^{*}$ | $\{\epsilon, a, b, a a, a b, b a, b b, a a a, a a b, a b a, a b b, \ldots\}$ |
| $a \mid a^{*} b$ | $\{a, b, a b, a a b, a a a b, a a a a b, \ldots\}$ |

## Specifying Tokens with REs

Typical choice: $\Sigma=$ ASCII characters, i.e.,
\{ぃ,!,",\#,\$, ..., $0,1, \ldots, 9, \ldots, A, \ldots, Z, \ldots, \sim\}$
letters: $\mathrm{A}|\mathrm{B}| \cdots|\mathrm{Z}| \mathrm{a}|\cdots| \mathrm{z}$
digits: $0|1| \cdots \mid 9$
identifier: letter(letter | digit)*

## Implementing Scanners Automatically

Regular Expressions (Rules)

Nondeterministic Finite Automata
Subset Construction
Deterministic Finite Automata

Tables

## Nondeterministic Finite Automata

1. Set of states
"All strings containing an even number of 0's and 1 's"

2. Set of input symbols $\Sigma:\{0,1\}$
3. Transition function $\sigma: S \times \Sigma_{\epsilon} \rightarrow 2^{S}$

| state | $\epsilon$ | 0 | 1 |
| :---: | :---: | :---: | :---: |
| $A$ | $\varnothing$ | $\{B\}$ | $\{C\}$ |
| $B$ | $\varnothing$ | $\{A\}$ | $\{D\}$ |
| $C$ | $\varnothing$ | $\{D\}$ | $\{A\}$ |
| $D$ | $\varnothing$ | $\{C\}$ | $\{B\}$ |

4. Start state $s_{0}$ :

A
5. Set of accepting states
$F:\{A\}$

## The Language induced by an NFA

An NFA accepts an input string $x$ iff there is a path from the start state to an accepting state that "spells out" $x$.


Show that the string "010010" is accepted.


## Translating REs into NFAs (Thompson's algorithm)



## Why So Many Extra States and Transitions?

Invariant: Single start state; single end state; at most two outgoing arcs from any state: helpful for simulation.

What if we used this simpler rule for Kleene Closure?


Now consider $a^{*} b^{*}$ with this rule:


Is this right?

## Translating REs into NFAs

Example: Translate $(a \mid b)^{*} a b b$ into an NFA. Answer:


Show that the string " $a a b b$ " is accepted. Answer:

$$
\rightarrow(0) \xrightarrow{\epsilon}(1) \xrightarrow{\epsilon}(3) \xrightarrow{\epsilon}(6) \xrightarrow{\epsilon}(8) \xrightarrow{b}(10)
$$

## Simulating NFAs

Problem: you must follow the "right" arcs to show that a string is accepted. How do you know which arc is right?
Solution: follow them all and sort it out later.
"Two-stack" NFA simulation algorithm:

1. Initial states: the $\epsilon$-closure of the start state
2. For each character $c$,

- New states: follow all transitions labeled $c$
- Form the $\epsilon$-closure of the current states

3. Accept if any final state is accepting

## Simulating an NFA: •aabb, Start



## Simulating an NFA: •aabb, $\epsilon$-closure



## Simulating an NFA: $a \cdot a b b$



## Simulating an NFA: $a \cdot a b b, \epsilon$-closure



## Simulating an NFA: $a a \cdot b b$



## Simulating an NFA: $a a \cdot b b, \epsilon$-closure



## Simulating an NFA: $a a b \cdot b$



Simulating an NFA: $a a b \cdot b, \epsilon$-closure


## Simulating an NFA: $a a b b$.



## Simulating an NFA: aabb•, Done



## Deterministic Finite Automata

Restricted form of NFAs:

- No state has a transition on $\epsilon$
- For each state $s$ and symbol $a$, there is at most one edge labeled $a$ leaving $s$.

Differs subtly from the definition used in COMS W3261 (Sipser, Introduction to the Theory of Computation)

Very easy to check acceptance: simulate by maintaining current state. Accept if you end up on an accepting state. Reject if you end on a non-accepting state or if there is no transition from the current state for the next symbol.

## Deterministic Finite Automata

```
{
    type token = ELSE | ELSEIF
}
rule token =
    parse "else" { ELSE }
        | "elseif" { ELSEIF }
```



## Deterministic Finite Automata

\{ type token = IF | ID of string | NUM of string \} rule token $=$
parse "if"


## Building a DFA from an NFA

Subset construction algorithm
Simulate the NFA for all possible inputs and track the states that appear.

Each unique state during simulation becomes a state in the DFA.

## Subset construction for $(a \mid b)^{*} a b b$



## Subset construction for $(a \mid b)^{*} a b b$



## Subset construction for $(a \mid b)^{*} a b b$



## Subset construction for $(a \mid b)^{*} a b b$



## Subset construction for $(a \mid b)^{*} a b b$



## Result of subset construction for $(a \mid b)^{*} a b b$



Is this minimal?

## Minimized result for $(a \mid b)^{*} a b b$



## Transition Table Used In the Dragon Book

Problem: Translate $(a \mid b)^{*} a b b$ into an NFA and perform subset construction to produce a DFA.


## Subset Construction

An DFA can be exponentially larger than the corresponding NFA.
$n$ states versus $2^{n}$
Tools often try to strike a balance between the two representations.

## Lexical Analysis with Ocamllex

## Constructing Scanners with Ocamllex



An example:
scanner.mll

```
{ open Parser }
rule token =
    parse [',' '\t' '\r' '\n'] { token lexbuf }
    { EOF }
```


## Ocamllex Specifications

```
{
    (* Header: verbatim OCaml code; mandatory *)
}
(* Definitions: optional *)
let ident = regexp
let ...
(* Rules: mandatory *)
rule entrypoint1 [arg1 ... argn] =
    parse pattern1 { action (* OCaml code *) }
        patternn { action }
and entrypoint2 [arg1 ... argn]} =
and
{
    (* Trailer: verbatim OCaml code; optional *)
}
```


## Patterns (In Order of Decreasing Precedence)

## Pattern


pattern *
pattern +
pattern?
pattern $_{1}$ pattern $_{2} \quad$ pattern f $_{1}$ followed by pattern ${ }_{2}$
pattern $_{1} \mid$ pattern $_{2} \quad$ Either pattern ${ }_{1}$ or pattern 2

## Meaning

A single character
Any character (underline)
The end-of-file
A literal string
" 1, " " 5, " or any lowercase letter
Any character except a digit
Grouping
A pattern defined in the let section
Zero or more patterns
One or more patterns
Zero or one patterns

## An Example

```
{ type token = PLUS | IF | ID of string | NUM of int }
let letter = ['a'-'z' 'A'-'Z']
let digit = ['0'-'9']
rule token =
    parse [', '\n' '\t'] { token lexbuf } (* Ignore whitespace *)
    | '+' { PLUS }
    (* A symbol *)
    | "if" { IF }
    | letter (letter | digit | '_')* as id { ID(id) }
    (* Numeric literals *)
    | digit+ as lit { NUM(int_of_string lit) }
    | "/*" { comment lexbuf } (* C-style comments *)
and comment =
    parse "*/" { token lexbuf } (* Return to normal scanning *)
            | _ { comment lexbuf } (* Ignore other characters *)
```


## Free-Format Languages

Typical style arising from scanner/parser division
Program text is a series of tokens possibly separated by whitespace and comments, which are both ignored.

- keywords (if while)
- punctuation (, ( +)
- identifiers (foo bar)
- numbers (10 -3.14159e+32)
- strings ("A String")


## Free-Format Languages

Java C C++ C\# Algol Pascal
Some deviate a little (e.g., C and $\mathrm{C}++$ have a separate preprocessor)
But not all languages are free-format.

## FORTRAN 77

FORTRAN 77 is not free-format. 72-character lines:
100

$$
\begin{aligned}
& \text { IF (IN .EQ. 'Y' .OR. IN .EQ. 'y' .OR. } \\
& \$ \text { IN .EQ. 'T' .OR. IN .EQ. 't') THEN }
\end{aligned}
$$



Statement label Continuation Normal

When column 6 is not a space, line is considered part of the previous.
Fixed-length line works well with a one-line buffer.

Makes sense on punch cards.


## Python

The Python scripting language groups with indentation

```
i = 0
while i < 10:
    i=i + 1
    print i # Prints 1, 2, ..., 10
i = 0
while i < 10:
    i=i + 1
print i # Just prints 10
```

This is succinct, but can be error-prone.
How do you wrap a conditional around instructions?

## Syntax and Language Design

Does syntax matter? Yes and no
More important is a language's semantics-its meaning.
The syntax is aesthetic, but can be a religious issue.
But aesthetics matter to people, and can be critical.
Verbosity does matter: smaller is usually better.
Too small can be problematic: APL is a succinct language with its own character set.

There are no APL programs, only puzzles.

## Syntax and Language Design

Some syntax is error-prone. Classic fortran example:

```
DO 5 I = 1,25 ! Loop header (for i = 1 to 25)
D0 5 I = 1.25 ! Assignment to variable D05I
```

Trying too hard to reuse existing syntax in C++:

```
vector< vector<int> > foo;
vector<vector<int>> foo; // Syntax error
```

C distinguishes > and >> as different operators.
Bjarne Stroustrup tells me they have finally fixed this.

## Modeling Sentences

## Simple Sentences Are Easy to Model

The boy eats hot dogs.
The dog eats ice cream.
Every happy girl eats candy.
A dog eats candy.
The happy happy dog eats hot dogs.


## Richer Sentences Are Harder

If the boy eats hot dogs, then the girl eats ice cream.
Either the boy eats candy, or every dog eats candy.


Does this work?

## Automata Have Poor Memories

Want to "remember" whether it is an "either-or" or "if-then" sentence. Only solution: duplicate states.


## Automata in the form of Production Rules

Problem: automata do not remember where they've been

```
S-> Either A
S-> If A
A-> the B
A-> the C
A-> a B
A-> a C
A-> every B
A-> every C
B-> happy B
B-> happy C
C-> boy D
C-> girl D
C-> dog D
D-> eats E
E-> hot dogs F
E-> ice cream F
E-> candy F
F-> or A
F-> then A
F->\epsilon
```


## Solution: Context-Free Grammars

Context-Free Grammars have the ability to "call subroutines:"

```
S-> Either P, or P. Exactly two Ps
S-> If P, then P.
P->AHN eats O One each of A,H,N, and O
A-> the
A-> a
A-> every
H-> happy H
H is "happy" zero or more times
H->\epsilon
N-> boy
N-> girl
N-> dog
O-> hot dogs
O-> ice cream
O-> candy
```


## A Context-Free Grammar for a Simplified C

program $\rightarrow \epsilon \mid$ program vdecl| program fdecl

## fdecl $\rightarrow$ id ( formals ) \{ vdecls stmts \}

formals $\rightarrow$ id|formals, id
vdecls $\rightarrow$ vdecl| vdecls vdecl
vdecl $\rightarrow$ int id ;
stmts $\rightarrow \epsilon \mid$ stmts stmt
stmt $\rightarrow$ expr ; | return expr ; | \{ stmts \}|if ( expr ) stmt| if ( expr) stmt else stmt|
for ( expr ; expr ; expr ) stmt|while ( expr ) stmt
expr $\rightarrow$ lit|id|id ( actuals)|( expr)|
expr + expr|expr - expr|expr * expr|expr / expr| expr == expr | expr != expr| expr < expr| expr <= expr| expr > expr| expr >= expr| expr = expr
actuals $\rightarrow$ expr|actuals, expr

## Constructing Grammars and Ocamlyacc

## Parsing

Objective: build an abstract syntax tree (AST) for the token sequence from the scanner.


Goal: verify the syntax of the program, discard irrelevant information, and "understand" the structure of the program.

Parentheses and most other forms of punctuation removed.

## Ambiguity

One morning I shot an elephant in my pajamas.

## Ambiguity

One morning I shot an elephant in my pajamas. How he got in my pajamas I don't know. -Groucho Marx


## Ambiguity in English

## I shot an elephant in my pajamas

| $S$ | $\rightarrow$ | $N P$ VP |
| :---: | :---: | :---: |
| $V P$ | $\rightarrow$ | $V N P$ |
| $V P$ | $\rightarrow$ | $\checkmark N P P P$ |
| $N P$ | $\rightarrow$ | $N P$ PP |
| $N P$ | $\rightarrow$ | Pro |
| $N P$ | $\rightarrow$ | Det Noun |
| $N P$ | $\rightarrow$ | Poss Noun |
| PP | $\rightarrow$ | P NP |
| $V$ | $\rightarrow$ | shot |
| Noun | $\rightarrow$ | elephant |
| Noun | $\rightarrow$ | pajamas |
| Pro | $\rightarrow$ | 1 |
| Det | $\rightarrow$ | an |
| $P$ | $\rightarrow$ | in |
| Poss | $\rightarrow$ | my |



Jurafsky and Martin, Speech and Language Processing

## The Dangling Else Problem

Who owns the else?
if (a) if (b) c(); else d();


Grammars are usually ambiguous; manuals give disambiguating rules such as C's:

As usual the "else" is resolved by connecting an else with the last encountered elseless if.

## The Dangling Else Problem

```
stmt : IF expr THEN stmt
    IF expr THEN stmt ELSE stmt
```

Problem comes after matching the first statement. Question is whether an "else" should be part of the current statement or a surrounding one since the second line tells us "stmt ELSE" is possible.

## The Dangling Else Problem

Some languages resolve this problem by insisting on nesting everything.
E.g., Algol 68:

$$
\text { if } a<b \text { then } a \text { else } b \text { fi; }
$$

" fi " is "if" spelled backwards. The language also uses do-od and case-esac.

## Another Solution to the Dangling Else Problem

Idea: break into two types of statements: those that have a dangling "then" ("dstmt") and those that do not ("cstmt"). A statement may be either, but the statement just before an "else" must not have a dangling clause because if it did, the "else" would belong to it.

```
stmt : dstmt
        cstmt
dstmt : IF expr THEN stmt
    | IF expr THEN cstmt ELSE dstmt
cstmt : IF expr THEN cstmt ELSE cstmt
    | other statements...
```

We are effectively carrying an extra bit of information during parsing: whether there is an open "then" clause. Unfortunately, duplicating rules is the only way to do this in a context-free grammar.

## Ambiguous Arithmetic

Ambiguity can be a problem in expressions. Consider parsing

$$
3-4 * 2+5
$$

with the grammar


## Operator Precedence and Associativity

Usually resolve ambiguity in arithmetic expressions
Like you were taught in elementary school:
"My Dear Aunt Sally"
Mnemonic for multiplication and division before addition and subtraction.

## Operator Precedence

Defines how "sticky" an operator is.

$$
1 * 2+3 * 4
$$

* at higher precedence than +:

$$
(1 * 2)+(3 * 4)
$$

+ at higher precedence than *:
$1 *(2+3) * 4$



## Associativity

Whether to evaluate left-to-right or right-to-left Most operators are left-associative


## Fixing Ambiguous Grammars

A grammar specification:

```
expr :
    expr PLUS expr
    expr MINUS expr
    expr TIMES expr
    expr DIVIDE expr
    NUMBER
```

Ambiguous: no precedence or associativity.
Ocamlyacc's complaint: "16 shift/reduce conflicts."

## Assigning Precedence Levels

Split into multiple rules, one per level

```
expr : expr PLUS expr
    expr MINUS expr
    term
term : term TIMES term
        | term DIVIDE term
        atom
atom : NUMBER
```

Still ambiguous: associativity not defined
Ocamlyacc's complaint: "8 shift/reduce conflicts."

## Assigning Associativity

Make one side the next level of precedence

```
expr : expr PLUS term
    | expr MINUS term
    term
term : term TIMES atom
        term DIVIDE atom
        atom
atom : NUMBER
```

This is left-associative.
No shift/reduce conflicts.

## Statement separators/terminators

C uses ; as a statement terminator.

```
if (a<b)
    printf("a less");
else {
    printf("b"); printf(" less");
}
```

Pascal uses ; as a statement separator.

```
if a<b then
    writeln('a less')
else begin
    write('a'); writeln(' less')
end
```

Pascal later made a final ; optional.

## Ocamlyacc Specifications

```
%{
    (* Header: verbatim OCaml; optional *)
%}
    /* Declarations: tokens, precedence, etc. */
%%
    /* Rules: context-free rules */
%%
```

(* Trailer: verbatim OCaml; optional *)

## Declarations

- \%token symbol...

Define symbol names (exported to .mli file)

- \%token < type > symbol ...

Define symbols with attached attribute (also exported)

- \%start symbol...

Define start symbols (entry points)

- \%type < type > symbol ...

Define the type for a symbol (mandatory for start)

- \%left symbol ...
- \%right symbol...
- \%nonassoc symbol...

Define predecence and associtivity for the given symbols, listed in order from lowest to highest precedence

## Rules

```
nonterminal :
    symbol ... symbol { semantic-action }
    symbol ... symbol { semantic-action }
```

- nonterminal is the name of a rule, e.g., "program," "expr"
- symbol is either a terminal (token) or another rule
- semantic-action is OCaml code evaluated when the rule is matched
- In a semantic-action, \$1, \$2, ... returns the value of the first, second, ...symbol matched
- A rule may include "\%prec symbol" to override its default precedence


## An Example .mly File

```
%token <int> INT
%token PLUS MINUS TIMES DIV LPAREN RPAREN EOL
%left PLUS MINUS /* lowest precedence */
%left TIMES DIV
%nonassoc UMINUS /* highest precedence */
%start main /* the entry point */
%type <int> main
%%
main:
    expr EOL { $1 }
expr:
    INT
    { $1 }
    | LPAREN expr RPAREN
    { $2 }
    expr PLUS expr { $1 + $3 }
    expr MINUS expr { $1 - $3 }
    expr TIMES expr { $1 * $3 }
    | expr DIV expr { $1 / $3 }
    | MINUS expr %prec UMINUS { - $2 }
```


## Parsing Algorithms

## Parsing Context-Free Grammars

There are $O\left(n^{3}\right)$ algorithms for parsing arbitrary CFGs, but most compilers demand $O(n)$ algorithms.

Fortunately, the LL and LR subclasses of CFGs have $O(n)$ parsing algorithms. People use these in practice.

## Rightmost Derivation of Id * Id + Id

$1: e \rightarrow t+e$
$2: e \rightarrow t$
$3: t \rightarrow \mathbf{I d} * t$
$4: t \rightarrow \mathbf{I d}$

At each step, expand the rightmost nonterminal.

## nonterminal

"handle": The right side of a production
Fun and interesting fact: there is exactly one rightmost expansion if the grammar is unambigious.

## Rightmost Derivation of Id * Id + Id

$$
\begin{aligned}
& 1: e \rightarrow t+e \\
& 2: e \rightarrow t \\
& 3: t \rightarrow \mathbf{I} * t \\
& 4: t \rightarrow \mathbf{I} *
\end{aligned}
$$

At each step, expand the rightmost nonterminal.

## nonterminal

```
"handle": The right side of a production
```

Fun and interesting fact: there is exactly one rightmost expansion if the grammar is unambigious.

## Rightmost Derivation of Id * Id + Id

$$
\begin{aligned}
& 1: e \rightarrow t+e \\
& 2: e \rightarrow t \\
& 3: t \rightarrow \mathbf{I} * t \\
& 4: t \rightarrow \mathbf{I d}
\end{aligned}
$$

At each step, expand the rightmost nonterminal.

## nonterminal

```
"handle": The right side of a production
```

Fun and interesting fact: there is exactly one rightmost expansion if the grammar is unambigious.

## Rightmost Derivation of Id $*$ Id + Id

$$
\begin{aligned}
& 1: e \rightarrow t+e \\
& 2: e \rightarrow t \\
& 3: t \rightarrow \mathbf{I d} * t \\
& 4: t \rightarrow \mathbf{I d}
\end{aligned}
$$

$$
\begin{gathered}
e \\
t+e \\
t+t \\
t+\text { (Id) }
\end{gathered}
$$

At each step, expand the rightmost nonterminal.

## nonterminal

```
"handle": The right side of a production
```

Fun and interesting fact: there is exactly one rightmost expansion if the grammar is unambigious.

## Rightmost Derivation of Id * Id + Id

$1: e \rightarrow t+e$<br>$2: e \rightarrow t$<br>$3: t \rightarrow \mathbf{I d} * t$<br>$4: t \rightarrow$ Id

$$
\begin{gathered}
e \\
t+e \\
t+(t) \\
t+\text { (Id) } \\
\text { Id } * t+\mathbf{I d}
\end{gathered}
$$

At each step, expand the rightmost nonterminal.

## nonterminal

## "handle": The right side of a production

Fun and interesting fact: there is exactly one rightmost expansion if the grammar is unambigious.

## Rightmost Derivation of Id * Id + Id

$1: e \rightarrow t+e$<br>$2: e \rightarrow t$<br>$3: t \rightarrow \mathbf{I} \mathbf{d} * t$<br>$4: t \rightarrow$ Id



At each step, expand the rightmost nonterminal.

## nonterminal

"handle": The right side of a production
Fun and interesting fact: there is exactly one rightmost expansion if the grammar is unambigious.

## Rightmost Derivation of Id $* \mathbf{I d}+\mathbf{I d}$

$1: e \rightarrow t+e$
$2: e \rightarrow t$
$3: t \rightarrow \mathbf{I d} * t$
$4: t \rightarrow \mathbf{I d}$


At each step, expand the rightmost nonterminal.
nonterminal
"handle": The right side of a production
Dragon-book style: underline handles

$$
e \rightarrow \underline{t+e} \rightarrow t+\underline{t} \rightarrow t+\underline{\mathbf{I d}} \rightarrow \underline{\mathbf{I d} * t}+\mathbf{I d} \rightarrow \mathbf{I d} * \underline{\mathbf{I} \mathbf{d}}+\mathbf{I d}
$$

## Rightmost Derivation: What to Expand

$1: e \rightarrow t+e$
$2: e \rightarrow t$
$3: t \rightarrow \mathbf{I} \mathbf{d} * t$
$4: t \rightarrow \mathbf{I d}$

$$
\begin{gathered}
e \\
t+e \\
t+t \\
t+\text { (Id } \\
\text { (Id } * t)+\mathbf{I d} \\
\text { Id } * \text { (Id) }+\mathbf{I d}
\end{gathered}
$$



Expand here $\uparrow$
Terminals only

## Reverse Rightmost Derivation

$$
\begin{aligned}
& 1: e \rightarrow t+e \\
& 2: e \rightarrow t \\
& 3: t \rightarrow \mathbf{I d} * t \\
& 4: t \rightarrow \mathbf{I d}
\end{aligned}
$$

$$
\begin{gathered}
e \\
t+e \\
t+t \\
t+\text { (Id) } \\
\text { Id } * t)+\mathbf{I d} \\
\mathbf{I d} * \text { (Id) }+\mathbf{I d}
\end{gathered}
$$



## Reverse Rightmost Derivation

$$
\begin{aligned}
& 1: e \rightarrow t+e \\
& 2: e \rightarrow t \\
& 3: t \rightarrow \mathbf{I d} * t \\
& 4: t \rightarrow \mathbf{I d}
\end{aligned}
$$

$$
\begin{gathered}
e \\
t+e \\
t+t \\
t+\text { (Id) } \\
\text { Id } * t)+\mathbf{I d} \\
\mathbf{I d} * \text { (Id) }+\mathbf{I d}
\end{gathered}
$$



## Reverse Rightmost Derivation

$$
\begin{aligned}
& 1: e \rightarrow t+e \\
& 2: e \rightarrow t \\
& 3: t \rightarrow \mathbf{I d} * t \\
& 4: t \rightarrow \mathbf{I d}
\end{aligned}
$$

$$
\begin{gathered}
e \\
t+e \\
t+(t) \\
t+\mathbf{I d}) \\
\text { Id } * t)+\mathbf{I d} \\
\mathbf{I d} *(\mathbf{l d})+\mathbf{I d}
\end{gathered}
$$

Id $* \mathbf{( d )}+\mathbf{I d}$
$t+\mathbf{l d} *+\mathbf{l d}$
viable prefixes terminals

## Reverse Rightmost Derivation

$$
\begin{aligned}
& 1: e \rightarrow t+e \\
& 2: e \rightarrow t \\
& 3: t \rightarrow \mathbf{I d} * t \\
& 4: t \rightarrow \mathbf{I d}
\end{aligned}
$$

$$
\begin{gathered}
e \\
t+e \\
t+(t) \\
t+\mathbf{I d}) \\
\text { Id } * t)+\mathbf{I d} \\
\mathbf{I d} *(\mathbf{l d})+\mathbf{I d}
\end{gathered}
$$



## Reverse Rightmost Derivation

$$
\begin{aligned}
& 1: e \rightarrow t+e \\
& 2: e \rightarrow t \\
& 3: t \rightarrow \mathbf{I d} * t \\
& 4: t \rightarrow \mathbf{I d}
\end{aligned}
$$

$$
\begin{gathered}
e \\
t+e \\
t+(t) \\
t+\mathbf{I d}) \\
\text { Id } * t+\mathbf{I d} \\
\mathbf{I d} *(\mathbf{l d})+\mathbf{I d}
\end{gathered}
$$

Id $* \mathbf{I d}+\mathbf{I d}$
$(\mathbf{d} * t+\mathbf{I d}$
$t+\mathbf{I d}$
$t+t$
$t+e$
viable prefixes terminals

viable prefixes terminals

## Reverse Rightmost Derivation

$$
\begin{aligned}
& 1: e \rightarrow t+e \\
& 2: e \rightarrow t \\
& 3: t \rightarrow \mathbf{I d} * t \\
& 4: t \rightarrow \mathbf{I d}
\end{aligned}
$$

$$
\begin{gathered}
e \\
t+e \\
t+(t) \\
t+\mathbf{I d} \\
\text { Id } * t)+\mathbf{I d} \\
\text { Id } * \text { (Id) }+\mathbf{I d}
\end{gathered}
$$



## Shift/Reduce Parsing Using an Oracle

$$
\begin{aligned}
& 1: e \rightarrow t+e \\
& 2: e \rightarrow t \\
& 3: t \rightarrow \mathbf{I d} * t \\
& 4: t \rightarrow \mathbf{I d}
\end{aligned}
$$

$$
\begin{gathered}
e \\
t+e \\
t+t \\
t+\mathbf{I d} \\
\text { Id } * t)+\mathbf{I d} \\
\text { Id } * \text { (Id) }+\mathbf{I d}
\end{gathered}
$$

Id $*$ Id + Id $\quad$ shift

## Shift/Reduce Parsing Using an Oracle

$$
\begin{aligned}
& 1: e \rightarrow t+e \\
& 2: e \rightarrow t \\
& 3: t \rightarrow \mathbf{I d} * t \\
& 4: t \rightarrow \mathbf{I d}
\end{aligned}
$$

$$
\begin{gathered}
e \\
t+e \\
t+t \\
t+\mathbf{I d} \\
\text { Id } * t)+\mathbf{I d} \\
\text { Id } * \text { Id }+\mathbf{I d}
\end{gathered}
$$

| Id $*$ Id + Id | shift |
| :--- | :--- |
| Id $*$ Id + Id | shift |

## Shift/Reduce Parsing Using an Oracle

$$
\begin{aligned}
& 1: e \rightarrow t+e \\
& 2: e \rightarrow t \\
& 3: t \rightarrow \mathbf{I d} * t \\
& 4: t \rightarrow \mathbf{I d}
\end{aligned}
$$

$$
\begin{gathered}
e \\
t+e \\
t+t \\
t+\mathbf{I d} \\
\text { Id } * t)+\mathbf{I d} \\
\text { Id } * \text { (Id) }+\mathbf{I d}
\end{gathered}
$$

| ld $*$ Id + Id | shift |
| :---: | :---: |
| Id $*$ Id + Id | shift |
| Id $*$ Id + Id | shift |

## Shift/Reduce Parsing Using an Oracle

$$
\begin{aligned}
& 1: e \rightarrow t+e \\
& 2: e \rightarrow t \\
& 3: t \rightarrow \mathbf{I d} * t \\
& 4: t \rightarrow \mathbf{I d}
\end{aligned}
$$

$$
\begin{gathered}
e \\
t+e \\
t+(t) \\
t+\mathbf{I d} \\
\text { Id } * t)+\mathbf{I d} \\
\text { Id } * \text { (Id) }+\mathbf{I d}
\end{gathered}
$$

| $\quad$ Id $*$ Id + Id | shift |
| ---: | :--- |
| Id $*$ Id + Id | shift |
| Id $*$ Id + Id | shift |
| Id $*$ Id + Id | reduce 4 |

## Shift/Reduce Parsing Using an Oracle

$$
\begin{aligned}
& 1: e \rightarrow t+e \\
& 2: e \rightarrow t \\
& 3: t \rightarrow \mathbf{I d} * t \\
& 4: t \rightarrow \mathbf{I d}
\end{aligned}
$$

$$
\begin{gathered}
e \\
t+e \\
t+t \\
t+\mathbf{I d} \\
\text { Id } * t)+\mathbf{I d} \\
\text { Id } * \text { (Id) }+\mathbf{I d}
\end{gathered}
$$



## Shift/Reduce Parsing Using an Oracle

$$
\begin{aligned}
& 1: e \rightarrow t+e \\
& 2: e \rightarrow t \\
& 3: t \rightarrow \mathbf{I d} * t \\
& 4: t \rightarrow \mathbf{I d}
\end{aligned}
$$

$$
\begin{gathered}
e \\
t+e \\
t+t \\
t+\mathbf{I d} \\
\text { Id } * t)+\mathbf{I d} \\
\text { Id } * \text { (Id) }+\mathbf{I d}
\end{gathered}
$$



## Shift/Reduce Parsing Using an Oracle

$$
\begin{aligned}
& 1: e \rightarrow t+e \\
& 2: e \rightarrow t \\
& 3: t \rightarrow \mathbf{I d} * t \\
& 4: t \rightarrow \mathbf{I d}
\end{aligned}
$$

$$
\begin{gathered}
e \\
t+e \\
t+t \\
t+\mathbf{I d} \\
\text { Id } * t)+\mathbf{I d} \\
\text { Id } * \text { (Id) }+\mathbf{I d}
\end{gathered}
$$


shift shift shift reduce 4 reduce 3 shift shift

## Shift/Reduce Parsing Using an Oracle

$$
\begin{aligned}
& 1: e \rightarrow t+e \\
& 2: e \rightarrow t \\
& 3: t \rightarrow \mathbf{I d} * t \\
& 4: t \rightarrow \mathbf{I d}
\end{aligned}
$$

$$
\begin{gathered}
e \\
t+e \\
t+t \\
t+(\mathbf{I d}) \\
\text { (Id } * t)+\mathbf{I d} \\
\text { Id } * \text { (Id) }+\mathbf{I d}
\end{gathered}
$$

| Id $*$ Id + Id | shift |
| :---: | :---: |
| Id $*$ Id + Id | shift |
| Id * Id + Id | shift |
| Id $*$ (d) + Id | reduce 4 |
| (d) * $t$ + Id | reduce 3 |
| $t+$ Id | shift |
| $t+\mathbf{I d}$ | shift |
| $t+\mathbf{l d}$ | reduce 4 |

## Shift/Reduce Parsing Using an Oracle

$$
\begin{aligned}
& 1: e \rightarrow t+e \\
& 2: e \rightarrow t \\
& 3: t \rightarrow \mathbf{I d} * t \\
& 4: t \rightarrow \mathbf{I d}
\end{aligned}
$$

$$
\begin{gathered}
e \\
t+e \\
t+t \\
t+\mathbf{I d} \\
\text { Id } * t)+\mathbf{I d} \\
\text { Id } * \text { (Id) }+\mathbf{I d}
\end{gathered}
$$

| $\mathbf{I d} * \mathbf{I d}+\mathbf{I d}$ | shift |
| :---: | :--- |
| $\mathbf{I d} * \mathbf{I d}+\mathbf{I d}$ | shift |
| $\mathbf{I d} * \mathbf{I d}+\mathbf{I d}$ | shift |
| $\mathbf{I d} * \mathbf{I d}+\mathbf{I d}$ | reduce 4 |
| $\mathbf{I d} * t+\mathbf{I d}$ | reduce 3 |
| $t+\mathbf{I d}$ | shift |
| $t+$ Id | shift |
| $t+\mathbf{I d}$ | reduce 4 |
| $t+t$ | reduce 2 |

## Shift/Reduce Parsing Using an Oracle

$$
\begin{aligned}
& 1: e \rightarrow t+e \\
& 2: e \rightarrow t \\
& 3: t \rightarrow \mathbf{I d} * t \\
& 4: t \rightarrow \mathbf{I d}
\end{aligned}
$$

$$
\begin{gathered}
e \\
t+e \\
t+t \\
t+\mathbf{I d} \\
\text { Id } * t)+\mathbf{I d} \\
\text { Id } * \text { (Id) }+\mathbf{I d}
\end{gathered}
$$

| ld * Id + Id | shift |
| :---: | :---: |
| Id * Id + Id | shift |
| Id * Id + Id | shift |
| Id $*$ (d) + Id | reduce 4 |
| (d) * $t$ + Id | reduce 3 |
| $t+\mathrm{ld}$ | shift |
| $t+\mathbf{l d}$ | shift |
| $t+$ (d) | reduce 4 |
| $t+$ t | reduce 2 |
| $t+e$ | reduce 1 |

## Shift/Reduce Parsing Using an Oracle

$$
\begin{aligned}
& 1: e \rightarrow t+e \\
& 2: e \rightarrow t \\
& 3: t \rightarrow \mathbf{I d} * t \\
& 4: t \rightarrow \mathbf{I d}
\end{aligned}
$$

$$
\begin{gathered}
e \\
t+e \\
t+t \\
t+\mathbf{I d} \\
\text { Id } * t)+\mathbf{I d} \\
\text { Id } * \text { (Id) }+\mathbf{I d}
\end{gathered}
$$



## Handle Hunting

Right Sentential Form: any step in a rightmost derivation Handle: in a sentential form, a RHS of a rule that, when rewritten, yields the previous step in a rightmost derivation.
The big question in shift/reduce parsing:

When is there a handle on the top of the stack?

Enumerate all the right-sentential forms and pattern-match against them? Usually infinitely many; let's try anyway.

## Some Right-Sentential Forms and Their Handles

$$
\begin{aligned}
& 1: e \rightarrow t+e \\
& 2: e \rightarrow t \\
& 3: t \rightarrow \mathbf{I d} * t \\
& 4: t \rightarrow \mathbf{I d}
\end{aligned}
$$



## Some Right-Sentential Forms and Their Handles

$1: e \rightarrow t+e$
$2: e \rightarrow t$
$3: t \rightarrow \mathbf{I d} * t$
$4: t \rightarrow$ Id


## Some Right-Sentential Forms and Their Handles

$1: e \rightarrow t+e$
$2: e \rightarrow t$
$3: t \rightarrow \mathbf{l d} * t$
$4: t \rightarrow \mathbf{l d}$

$$
\begin{array}{ll}
\text { Patterns: } & \mathbf{I d} * \mathbf{I d} * \cdots * \underline{\mathbf{I d} * t \cdots} \\
& \mathbf{I d} * \mathbf{I d} * \cdots * \underline{\mathbf{I} \mathbf{d} \cdots} \\
& t+t+\cdots+\underline{t+e} \\
& t+t+\cdots+t+\mathbf{\mathbf { I d }} \\
& t+t+\cdots+t+\mathbf{\mathbf { I d }} * \mathbf{I d} * \cdots * \underline{\mathbf{I d} * t} \\
& t+t+\cdots+\underline{t} \\
& \mathrm{e}
\end{array}
$$



$$
/ \backslash \quad \mathbf{I d} * \underline{\mathbf{I d}} * t+\mathbf{I d} \quad \mathbf{I d} * \underline{\mathbf{I d}}+\mathbf{I d}
$$

$$
\mathbf{I d} * \mathbf{I d} * \underline{\mathbf{I d} * t}+\mathbf{I d} \quad \mathbf{I d} * \mathbf{I d} * \underline{\mathbf{I d}}+\mathbf{I d}
$$

## The Handle-Identifying Automaton

Magical result, due to Knuth: An automaton suffices to locate a handle in a right-sentential form.

$$
\begin{aligned}
& \mathbf{I d} * \mathbf{I d} * \cdots * * \underline{\mathbf{I d} * t} \cdots \\
& \mathbf{I d} * \mathbf{I d} * \cdots * \underline{\mathbf{I d} \cdots} \\
& t+t+\cdots+\underline{t+e} \\
& t+t+\cdots+t+\underline{\mathbf{I d}} \\
& t+t+\cdots+t+\mathbf{\mathbf { I d }} * \mathbf{I d} * \cdots * \underline{\mathbf{I d} * t} \\
& t+t+\cdots+\underline{t} \\
& \mathrm{e}
\end{aligned}
$$



## Building the Initial State of the LR(0) Automaton

$$
\begin{aligned}
& 1: e \rightarrow t+e \\
& 2: e \rightarrow t \\
& 3: t \rightarrow \mathbf{I d} * t \\
& 4: t \rightarrow \mathbf{I d}
\end{aligned}
$$

$e^{\prime} \rightarrow \Omega e$

Key idea: automata identify viable prefixes of right sentential forms. Each state is an equivalence class of possible places in productions.
At the beginning, any viable prefix must be at the beginning of a string expanded from $e$. We write this condition " $e \rightarrow$ ' $e$ "

## Building the Initial State of the LR(0) Automaton

$1: e \rightarrow t+e$
$2: e \rightarrow t$
$3: t \rightarrow \mathbf{I d} * t$
$4: t \rightarrow \mathbf{I d}$

$$
\begin{aligned}
& e^{\prime} \rightarrow \boxtimes e \\
& e \rightarrow \checkmark t+e \\
& e \rightarrow \diamond t
\end{aligned}
$$

Key idea: automata identify viable prefixes of right sentential forms. Each state is an equivalence class of possible places in productions.
At the beginning, any viable prefix must be at the beginning of a string expanded from $e$. We write this condition " $e$ ' $\rightarrow$ e"
There are two choices for what an $e$ may expand to: $t+e$ and $t$. So when $e^{\prime} \rightarrow ৫ e, e \rightarrow \diamond t+e$ and $e \rightarrow \diamond t$ are also true, i.e., it must start with a string expanded from $t$.

## Building the Initial State of the LR(0) Automaton

$1: e \rightarrow t+e$
$2: e \rightarrow t$
$3: t \rightarrow \mathbf{I d} * t$
$4: t \rightarrow$ Id

$$
\begin{aligned}
& e^{\prime} \rightarrow \text { ® } \\
& e \rightarrow \mathbb{Q} t+e \\
& e \rightarrow \bigcirc t \\
& t \rightarrow \text { ©ld } * t \\
& t \rightarrow \text { ©ld }
\end{aligned}
$$

Key idea: automata identify viable prefixes of right sentential forms. Each state is an equivalence class of possible places in productions.
At the beginning, any viable prefix must be at the beginning of a string expanded from $e$. We write this condition " $e$ ' $\rightarrow$ ®e"
There are two choices for what an $e$ may expand to: $t+e$ and $t$. So when $e^{\prime} \rightarrow ৫ e, e \rightarrow \diamond t+e$ and $e \rightarrow \diamond t$ are also true, i.e., it must start with a string expanded from $t$.

Also, $t$ must be Id $* t$ or Id, so $t \rightarrow$ ©ld $* t$ and $t \rightarrow$ ©ld.
This is a closure, like $\epsilon$-closure in subset construction.

## Building the LR(0) Automaton

$$
\begin{aligned}
e^{\prime} & \rightarrow \Omega e \\
e & \rightarrow \Omega t+e \\
\mathbf{S O}: & e \rightarrow \Omega t \\
t & \rightarrow \text { ®ld } * t \\
t & \rightarrow \text { ©ld }
\end{aligned}
$$

The first state suggests a viable prefix can start as any string derived from $e$, any string derived from $t$, or Id.

## Building the LR(0) Automaton

"Just passed a string derived from $e^{\prime \prime}$


The first state suggests a viable prefix can start as any string derived from $e$, any string derived from $t$, or Id. The items for these three states come from advancing the $\varangle$ across each thing, then performing the closure operation (vacuous here).
S1: $\begin{aligned} & t \rightarrow \mathbf{I d} \varangle * t \\ & t \rightarrow \mathbf{I d} \varangle\end{aligned}$
"Just passed a prefix that ended in an Id"

## Building the LR(0) Automaton



## Building the LR(0) Automaton



## Building the LR(0) Automaton



## What to do in each state?



Stack Input Action
Id $* \mathbf{I d} * \cdots *$ Id $\quad * \cdots \quad$ Shift
Id $* \mathbf{I d} * \cdots *$ Id $\quad+\cdots \quad$ Reduce 4
Id $*$ Id $* \cdots *$ Id
Reduce 4
Id $*$ Id $* \cdots *$ Id $\quad$ Id $\cdots \quad$ Syntax Error

## The first function

If you can derive a string that starts with terminal $t$ from some sequence of terminals and nonterminals $\alpha$, then $t \in \operatorname{first}(\alpha)$.

1. Trivially, $\operatorname{first}(X)=\{X\}$ if $X$ is a terminal.
2. If $X \rightarrow \epsilon$, then add $\epsilon$ to first( $X$ ).
3. For each prod. $X \rightarrow Y \cdots$, add first $(Y)-\{\epsilon\}$ to $\operatorname{first}(X)$. If $X$ can produce something, $X$ can start with whatever that starts with
4. For each prod. $X \rightarrow Y_{1} \cdots Y_{k} Z \cdots$ where $\epsilon \in \operatorname{first}\left(Y_{i}\right)$ for $i=1, \ldots, k$, add first $(Z)-\{\varepsilon\}$ to $\operatorname{first}(X)$.
Skip all potential $\epsilon$ 's at the beginning of whatever $X$ produces

$$
\begin{aligned}
& 1: e \rightarrow t+e \\
& 2: e \rightarrow t \\
& 3: t \rightarrow \mathbf{I d} * t \\
& 4: t \rightarrow \mathbf{I d}
\end{aligned}
$$

$$
\operatorname{first}(\mathbf{l d})=\{\mathbf{I d}\}
$$

$$
\text { first }(t)=\{\mathbf{I}\} \text { because } t \rightarrow \mathbf{I d} * t \text { and } t \rightarrow \mathbf{I d}
$$

$$
\text { first }(e)=\{\mathbf{I}\} \text { because } e \rightarrow t+e, e \rightarrow t \text {, and }
$$

$$
\operatorname{first}(t)=\{\mathbf{I d}\} .
$$

## The follow function

If $t$ is a terminal, $A$ is a nonterminal, and $\cdots A t \cdots$ can be derived, then $t \in$ follow $(A)$.

1. Add \$ ("end-of-input") to follow(S) (start symbol). End-of-input comes after the start symbol
2. For each prod. $\rightarrow \cdots A \alpha$, add first $(\alpha)-\{\epsilon\}$ to follow $(A)$. $A$ is followed by the first thing after it
3. For each prod. $A \rightarrow \cdots B$ or $A \rightarrow \cdots B \alpha$ where $\epsilon \in$ first $(\alpha)$, then add everything in follow $(A)$ to follow $(B)$. If $B$ appears at the end of a production, it can be followed by whatever follows that production

| $1: e \rightarrow t+e$ | follow $(e)=\{\$\}$ |
| :--- | :--- |
| $2: e \rightarrow t$ | follow $(t)=\{\quad\}$ |
| $3: t \rightarrow \mathbf{I d} * t$ | 1. Because $e$ is the start symbol |
| $4: t \rightarrow \mathbf{I d}$ |  |
| first $(t)=\{\mathbf{I d}\}$ |  |
| first $(e)=\{\mathbf{l d}\}$ |  |

## The follow function

If $t$ is a terminal, $A$ is a nonterminal, and $\cdots A t \cdots$ can be derived, then $t \in$ follow $(A)$.

1. Add \$ ("end-of-input") to follow(S) (start symbol). End-of-input comes after the start symbol
2. For each prod. $\rightarrow \cdots A \alpha$, add first $(\alpha)-\{\epsilon\}$ to follow $(A)$. $A$ is followed by the first thing after it
3. For each prod. $A \rightarrow \cdots B$ or $A \rightarrow \cdots B \alpha$ where $\epsilon \in$ first $(\alpha)$, then add everything in follow $(A)$ to follow $(B)$. If $B$ appears at the end of a production, it can be followed by whatever follows that production

| $1: e \rightarrow t+e$ | follow $(e)=\{\$\}$ |
| :--- | :--- |
| $2: e \rightarrow t$ | follow $(t)=\{+\quad\}$ |
| $3: t \rightarrow \mathbf{I d} * t$ | 2. Because $e \rightarrow \underline{t}+e$ and first $(+)=\{+\}$ |
| $4: t \rightarrow \mathbf{I d}$ |  |
| first $(t)=\{\mathbf{I d}\}$ |  |
| first $(e)=\{\mathbf{I d}\}$ |  |

## The follow function

If $t$ is a terminal, $A$ is a nonterminal, and $\cdots A t \cdots$ can be derived, then $t \in$ follow $(A)$.

1. Add \$ ("end-of-input") to follow(S) (start symbol). End-of-input comes after the start symbol
2. For each prod. $\rightarrow \cdots A \alpha$, add first $(\alpha)-\{\epsilon\}$ to follow $(A)$. $A$ is followed by the first thing after it
3. For each prod. $A \rightarrow \cdots B$ or $A \rightarrow \cdots B \alpha$ where $\epsilon \in$ first $(\alpha)$, then add everything in follow $(A)$ to follow $(B)$. If $B$ appears at the end of a production, it can be followed by whatever follows that production

| $1: e \rightarrow t+e$ | follow $(e)=\{\$\}$ |
| :--- | :--- |
| $2: e \rightarrow t$ | follow $(t)=\{+, \$\}$ |
| $3: t \rightarrow \mathbf{I d} * t$ | 3. Because $e \rightarrow \underline{t}$ and $\$ \in$ follow $(e)$ |
| $4: t \rightarrow \mathbf{I d}$ |  |
| first $(t)=\{\mathbf{I d}\}$ |  |
| first $(e)=\{\mathbf{I d}\}$ |  |

## The follow function

If $t$ is a terminal, $A$ is a nonterminal, and $\cdots A t \cdots$ can be derived, then $t \in$ follow $(A)$.

1. Add \$ ("end-of-input") to follow(S) (start symbol). End-of-input comes after the start symbol
2. For each prod. $\rightarrow \cdots A \alpha$, add first $(\alpha)-\{\epsilon\}$ to follow $(A)$. $A$ is followed by the first thing after it
3. For each prod. $A \rightarrow \cdots B$ or $A \rightarrow \cdots B \alpha$ where $\epsilon \in$ first $(\alpha)$, then add everything in follow $(A)$ to follow $(B)$. If $B$ appears at the end of a production, it can be followed by whatever follows that production

$$
\begin{aligned}
& 1: e \rightarrow t+e \\
& 2: e \rightarrow t \\
& 3: t \rightarrow \mathbf{I} \mathbf{d} * t \\
& 4: t \rightarrow \mathbf{I d} \\
& \text { first }(t)=\{\mathbf{I d}\} \\
& \operatorname{first}(e)=\{\mathbf{I d}\}
\end{aligned}
$$

follow $(e)=\{\$\}$
follow $(t)=\{+, \$\}$
Fixed-point reached: applying any rule does not change any set

## Converting the LR(0) Automaton to an SLR Table


follow $(e)=\{\$\}$
follow $(t)=\{+, \$\}$

| State |  | Action |  |  |  | Goto |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Id | + | $*$ | $\$$ |  |  |

From S0, shift an Id and go to S1; or cross a $t$ and go to S 2 ; or cross an $e$ and go to S7.

## Converting the LR(0) Automaton to an SLR Table


follow $(e)=\{\$\}$
follow $(t)=\{+, \$\}$

| State |  | Action |  |  |  | Goto |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Id | + | $*$ | $\$$ |  |  |

From S1, shift a * and go to S3; or, if the next input $\in$ follow $(t)$, reduce by rule 4.

## Converting the LR(0) Automaton to an SLR Table


follow $(e)=\{\$\}$
follow $(t)=\{+, \$\}$

| State | Action |  |  |  | Goto |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Id | + | * | \$ | $e$ | $t$ |
| 0 | s1 |  |  |  | 7 | 2 |
| 1 |  | r4 | s3 | r4 |  |  |
| 2 |  | s4 |  | r2 |  |  |

From S2, shift a + and go to S4; or, if the next input $\in$ follow(e), reduce by rule 2 .

## Converting the LR(0) Automaton to an SLR Table



## Converting the LR(0) Automaton to an SLR Table


follow $(e)=\{\$\}$
follow $(t)=\{+, \$\}$

| State |  | Action |  |  |  | Goto |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | Id | + | $*$ | $\$$ |  | $e$ |

From S4, shift an Id and go to S1; or cross an $e$ or a $t$.

## Converting the LR(0) Automaton to an SLR Table



## Converting the LR(0) Automaton to an SLR Table


follow $(e)=\{\$\}$
follow $(t)=\{+, \$\}$

| State |  | Action |  |  |  | Goto |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | Id | + | $*$ | $\$$ |  | $e$ |

From S6, reduce using rule 1 if the next symbol $\in$ follow $(e)$.

## Converting the LR(0) Automaton to an SLR Table



## Shift/Reduce Parsing with an SLR Table

Stack Input Action
$1: e \rightarrow t+e$
$2: e \rightarrow t$
$3: t \rightarrow \mathbf{I d} * t$
$4: t \rightarrow$ Id

| State | Action |  |  |  |  | Goto |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Id | + | $*$ | $\$$ |  |  |


| 0 | $\mathbf{I d} * \mathbf{I d}+\mathbf{I d} \$ \quad$ Shift, goto 1 |
| :--- | :--- |

Look at the state on top of the stack and the next input token.

Find the action (shift, reduce, or error) in the table.

In this case, shift the token onto the stack and mark it with state 1.

## Shift/Reduce Parsing with an SLR Table

Stack Input Action
$1: e \rightarrow t+e$
$2: e \rightarrow t$
$3: t \rightarrow \mathbf{I} \mathbf{d} * t$
$4: t \rightarrow \mathbf{I d}$

| State | Action |  |  |  |  | Goto |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Id | + | $*$ | $\$$ | $e$ |  |


| 0 | Id $*$ Id + Id $\$$ | Shift, goto 1 |
| :---: | :--- | :--- |
| 0Id | $* \mathbf{I d}+\mathbf{I d} \$$ | Shift, goto 3 |

Here, the state is 1 , the next symbol is $*$, so shift and mark it with state 3 .

## Shift/Reduce Parsing with an SLR Table

Stack Input Action
$1: e \rightarrow t+e$
$2: e \rightarrow t$
$3: t \rightarrow \mathbf{I d} * t$
$4: t \rightarrow \mathbf{I d}$

| State | Action |  |  |  |  | Goto |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Id | + | $*$ | $\$$ | $e$ |  |


| 0 | Id * Id + Id \$ | Shift, goto 1 |
| :---: | :---: | :---: |
| $0 \stackrel{\text { Id }}{1}$ | * Id + Id \$ | Shift, goto 3 |
| $0 \begin{gathered}\text { Id } \\ 1\end{gathered}$ | Id + Id \$ | Shift, goto 1 |
| $0 \underset{1}{\text { Id }}$ ( ${ }_{3}^{*}$ * ${ }_{1}^{\text {Id }}$ | + Id \$ | Reduce 4 |

Here, the state is 1 , the next symbol is + . The table says reduce using rule 4.

## Shift/Reduce Parsing with an SLR Table

Stack Input

| 0 | $\mathbf{I d} * \mathbf{I d}+\mathbf{I d}$ \$ | Shift, goto 1 |
| :---: | :---: | :---: |
| $0 \stackrel{\text { Id }}{1}$ | * Id + Id \$ | Shift, goto 3 |
| $0{ }_{1}^{\text {Id }}$ ( ${ }_{1}^{*}$ * | Id + Id \$ | Shift, goto 1 |
|  | + Id \$ | Reduce 4 |
| $0 \underset{1}{\text { Id }}$ ( ${ }_{3}$ | + Id \$ |  |

Remove the RHS of the rule (here, just Id), observe the state on the top of the stack, and consult the "goto" portion of the table.

## Shift/Reduce Parsing with an SLR Table

Stack
Input

| 0 | $\mathbf{l d}$ * ld + Id \$ | Shift, goto 1 |
| :---: | :---: | :---: |
| $0 \stackrel{\text { Id }}{1}$ | * ld + Id \$ | Shift, goto 3 |
| $0 \underset{1}{\text { Id }}$ - ${ }_{3}$ | Id + Id \$ | Shift, goto 1 |
|  | + Id \$ | Reduce 4 |
| $0 \begin{gathered}\text { Id } \\ 1\end{gathered}$ | + Id \$ | Reduce 3 |

$1: e \rightarrow t+e$
$2: e \rightarrow t$
$3: t \rightarrow \mathbf{I d} * t$
$4: t \rightarrow \mathbf{I d}$

| State | Action |  |  |  |  | Goto |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Id | + | $*$ | $\$$ |  |  |

## Shift/Reduce Parsing with an SLR Table

Stack Input

| 0 | $\mathbf{l d}$ * ld + Id \$ | Shift, goto 1 |
| :---: | :---: | :---: |
| $0 \stackrel{\text { Id }}{1}$ | * ld + Id \$ | Shift, goto 3 |
| $0 \underset{1}{\text { Id }}$ - ${ }_{3}$ | Id + Id \$ | Shift, goto 1 |
|  | + Id \$ | Reduce 4 |
| $0 \begin{gathered}\text { Id } \\ 1\end{gathered}$ | + Id \$ | Reduce 3 |
| $0 \frac{t}{2}$ | + Id \$ | Shift, goto 4 |

This time, we strip off the RHS for rule $3, I d * t$, exposing state 0 , so we push a $t$ with state 2 .

## Shift/Reduce Parsing with an SLR Table

Stack Input
$1: e \rightarrow t+e$
$2: e \rightarrow t$
$3: t \rightarrow \mathbf{I d} * t$
$4: t \rightarrow \mathbf{I d}$

| State | Action |  |  |  | Goto |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Id | + | * | \$ | $e$ | $t$ |
| 0 | s1 |  |  |  | 7 | 2 |
| 1 |  | r4 | s3 | r4 |  |  |
| 2 |  | s4 |  | r2 |  |  |
| 3 | s1 |  |  |  |  | 5 |
| 4 | s1 |  |  |  | 6 | 2 |
| 5 |  | r3 |  | r3 |  |  |
| 6 |  |  |  | r1 |  |  |
| 7 |  |  |  | $\checkmark$ |  |  |


| 0 | Id * Id + Id \$ | Shift, goto 1 |
| :---: | :---: | :---: |
| $0 \stackrel{\text { ld }}{1}$ | * Id + Id \$ | Shift, goto 3 |
| 0Id <br> 1 | Id + Id \$ | Shift, goto 1 |
| $0{ }_{1}^{\text {ld }}$ - ${ }_{3}^{*}{ }_{1}^{\text {ld }}$ | + Id \$ | Reduce 4 |
| $0 \begin{gathered}\text { Od } \\ 1\end{gathered}$ | + Id \$ | Reduce 3 |
| $0 \frac{t}{2}$ | + Id \$ | Shift, goto 4 |
| $\begin{array}{lll}0 & t \\ 2 & 4 \\ 4\end{array}$ | Id \$ | Shift, goto 1 |
| $0{ }_{0} \mathrm{~L}_{2}^{t}{ }_{4}^{+}{ }_{1}^{\text {Id }}$ | \$ | Reduce 4 |
| 0 $\begin{array}{l}t \\ 2\end{array}$ 4 4 | \$ | Reduce 2 |
| 00 | \$ | Reduce 1 |
| $0 \frac{e}{7}$ | \$ | Accept |

## $\mathrm{L}, \mathrm{R}$, and all that

LR parser: "Bottom-up parser":
L = Left-to-right scan, $\mathrm{R}=$ (reverse) Rightmost derivation
RR parser: $R=$ Right-to-left scan (from end)
I called them "Australian style"; nobody uses these
LL parser: "Top-down parser":
L = Left-to-right scan: $L=$ (reverse) Leftmost derivation
LR(1): LR parser that considers next token (lookahead of 1)
LR(0): Only considers stack to decide shift/reduce
SLR(1): Simple LR: lookahead from first/follow rules
Derived from LR(0) automaton
LALR(1): Lookahead LR(1): fancier lookahead analysis Uses same LR(0) automaton as SLR(1)

Ocamlyacc builds LALR(1) tables.

## The Punchline

This is a tricky, but mechanical procedure. The Ocamlyacc parser generator uses a modified version of this technique to generate fast bottom-up parsers.
You need to understand it to comprehend error messages:

Shift/reduce conflicts are caused by a state like
$t \rightarrow$.Else $s$
$t \rightarrow$.
If the next token is Else, do you reduce it since Else may follow a $t$, or shift it?

Reduce/reduce conflicts are caused by a state like

$$
\begin{aligned}
& t \rightarrow \mathbf{I} \mathbf{d} * t \\
& e \rightarrow \mathbf{I d} * t
\end{aligned}
$$

Do you reduce by " $t \rightarrow \mathbf{I d} * t$ " or by " $e \rightarrow \mathbf{I d} * t$ "?

## A Reduce/Reduce Conflict

$1: a \rightarrow \mathbf{I d}$ Id
$2: a \rightarrow b$
$3: b \rightarrow$ Id Id


