Fundamentals of Computer Systems Review for the Final

Stephen A. Edwards

Columbia University

Summer 2017

The Final

- 3 hours
- 8-10 problems
- Closed book
- Simple calculators are OK, but unnecessary
- One double-sided 8.5 \times 11" sheet of your own notes
- Much like homework assignments

- Number Representation
 - Binary, Octal, Hex
 - One's, Two's Comp.
 - Fixed-point, BCD
- Boolean Logic
 - Axioms, Simplification
 - Implicants, Minterms
 - De Morgan's Theorem
 - Karnaugh Maps
- Combinational Logic
 - Decoders
 - Multiplexers
 - Timing and Glitches
 - Adders
- Sequential Logic
 - Bistables; SR, D Latches
 - D Flip-Flops
 - Synchronous Logic
 - Shift Registers
 - Counters

- Finite State Machines
 - Moore and Mealy Machines
 - The Snail Example
 - The TLC: One-Hot Encoding
- CMOS Logic Gates
 - The Inverter
 - The CMOS NAND Gate
 - The CMOS NOR Gate
 - A CMOS
 - AND-OR-INVERT Gate
 - General Static CMOS Gates
- Memories
 - ROMs, EPROMs, FLASH
 - The SRAM Cell
 - Dynamic RAM Cell
 - PLAs and FPGAs

- MIPS Architecture/Assembly programming
 - Computational, Load/Store, & Control-flow Instrs.
 - Instruction Encoding
 - Pseudoinstructions
 - Calling Conventions
 - Higher-level constructs; subroutines and recursion
- MIPS Microarchitecture/Datapaths
 - Single-Cycle
 - The datapath for lw, sw, R-type, and branch
 - The controller: instruction decoding
 - Processor Performance
 - Multi-cycle
 - Constructing the datapath
 - The FSM controller
 - Performance Analysis
 - Pipelined
 - Basic pipelined datapath and control
 - Hazards: forwarding, stalling, and flushing
 - Performance Analysis

The Memory Hierarchy: Caches

- Memory hierarchy to make it fast & cheap
- Temporal and Spatial Locality
- Memory performance; hit rate
- Direct-mapped caches
- n-way set associative caches
- Fully associative caches