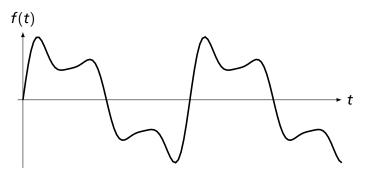
Audio and Other Waveforms

Stephen A. Edwards

Columbia University


Spring 2016

Waveforms

Time-varying scalar value

Commonly called a "signal" in the control-theory literature

Sound: air pressure over time

Raster video: brightness over time

Speed over time, position over time, etc.

The Fourier Series

Any periodic function can be expressed as a sum of harmonics

For a smooth function f(t) with period T, i.e.,

f(t)=f(t+T),

there exists coefficients a_n , b_n such that

$$f(t) = a_0 + \sum_{m=1}^{\infty} a_m \cos \frac{2\pi m t}{T} + b_m \sin \frac{2\pi m t}{T}$$

$$f(t) = \frac{4}{\pi} \left(\sin t \right)$$

$$f(t)$$

$$f(t)$$

$$f(t)$$

$$2\pi$$

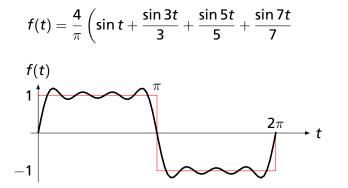
$$t$$

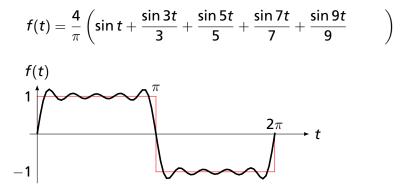
$$f(t) = \frac{4}{\pi} \left(\sin t + \frac{\sin 3t}{3} \right)$$

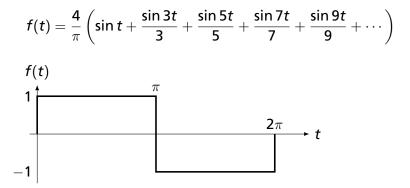
$$f(t)$$

$$f(t)$$

$$f(t)$$

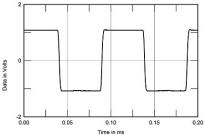

$$2\pi$$


$$t$$


$$f(t) = \frac{4}{\pi} \left(\sin t + \frac{\sin 3t}{3} + \frac{\sin 5t}{5} \right)$$

$$f(t)$$

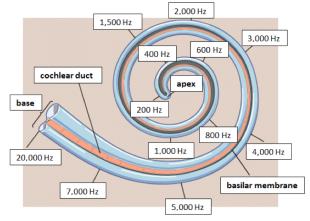
$$1 \xrightarrow{2\pi} t$$



Bandwidth-Limited Signals

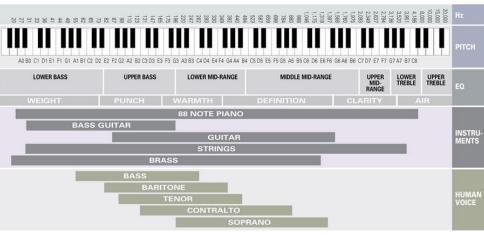
Basic observation: nothing changes infinitely fast

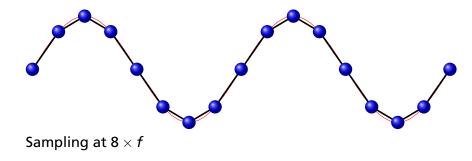
Bounding the rate of change sets the bandwidth of a signal

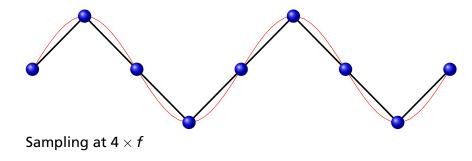

Hertz or Hz: "per second"

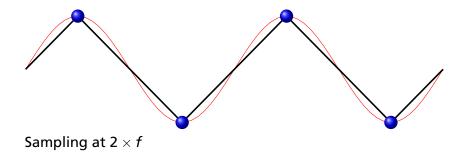
Source: Stereophile magazine: Marantz SM-11S1, small-signal 10kHz squarewave into 8 ohms. A \$4000 audiophile amplifier rated 5 Hz–120 kHz.

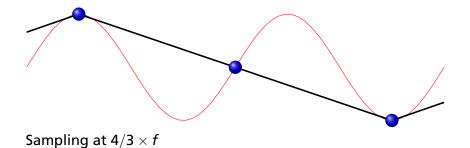
The Bandwidth of Sound

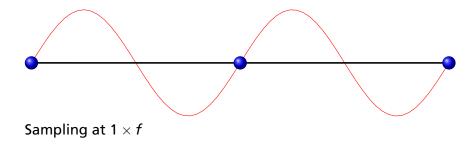

Human ears are almost a Fourier transform

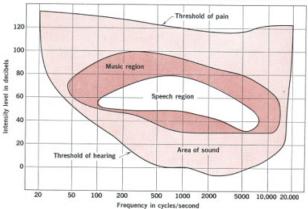

The Organ of Corti inside the Cochlea


Source: Encyclopedia Britannica


Human Hearing




Empirically, humans hear 20 Hz–20 kHz Highest frequency limit tends to decrease with age



Audio Sampling Rates

CD-quality audio: 44.1 kHz

Telephone-quality audio: 8 kHz

Dull, Metcalfe, Brooks. Modern Physics

The range of audibility of the human ear

Signal-to-Noise Ratio

You can't always get what you want / but if you try sometimes you might find / you get what you need —The Rolling Stones

Signals are never pure: there's always something that makes them deviate from the ideal.

Signal-to-Noise ratio:

 $SNR = \frac{Signal Power}{Noise Power}$

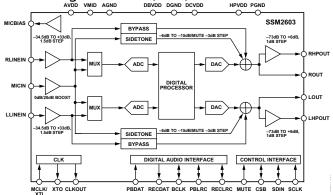
Usually measured using a log scale, i.e.,

$$dB = 10 \log_{10} rac{P_{signal}}{P_{noise}}$$

Human Hearing dB, SNR, and bits

dbSPL Table

 $n \times 6.02 + 1.76 = SNR$ in dB


CD samples:

16 bits = 98 dB

Near the limit of human hearing

The CODEC on the SoCKit: Analog Devices SSM2603

enCOder/DECoder: analog-to-digital converter (ADC) + digital-to-analog converter (DAC)

Two 24-bit ADCs; two 24-bit DACs + 7 mW headphone amp Sampling rates: 22.05, 24, 32, 44.1, 48, 88.2, and 96 kHz

SoCKit Interface to the Audio Codec

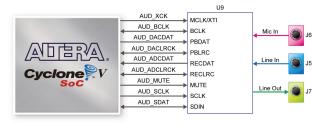


Figure 3-16 Connections between FPGA and Audio CODEC

Signal Name	FPGA Pin No.	Description	I/O Standard
AUD_ADCLRCK	PIN_AG30	Audio CODEC ADC LR Clock	3.3V
AUD_ADCDAT	PIN_AC27	Audio CODEC ADC Data	3.3V
AUD_DACLRCK	PIN_AH4	Audio CODEC DAC LR Clock	3.3V
AUD_DACDAT	PIN_AG3	Audio CODEC DAC Data	3.3V
AUD_XCK	PIN_AC9	Audio CODEC Chip Clock	3.3V
AUD_BCLK	PIN_AE7	Audio CODEC Bit-Stream Clock	3.3V
AUD_I2C_SCLK	PIN_AH30	I2C Clock	3.3V
AUD_I2C_SDAT	PIN_AF30	I2C Data	3.3V
AUD_MUTE	PIN_AD26	DAC Output Mute, Active Low	3.3V

Table 3-14 Pin Assignments for Audio CODEC

 I^2C bus for configuration: data format, volume levels, etc. Synchronous serial protocol (data + L/R + bit clock) for data

Storing Waveforms

If you store each sample,

$$\frac{samples}{second} \times \frac{bits}{sample} \times channels = \frac{bits}{second}$$

Total memory consumption:

$$\frac{\textit{bits}}{\textit{seconds}} \times \textit{seconds} = \textit{bits}$$

E.g., CD-quality audio: 44.1 kHz, 16 bits/sample, 2 channels

44.1 kHz \times 16 \times 2 = 1.4 Mbps = 175 KB/s

A 74-minute CD:

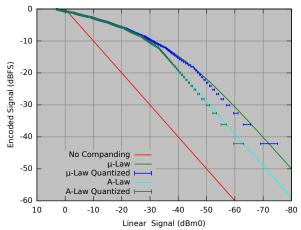
1.4 *Mbps* × 60
$$\frac{\text{seconds}}{\text{minute}}$$
 × 74 minutes × $\frac{\text{byte}}{8 \text{ bits}}$ = 783 *MB*

Reducing Memory: Sample Less; Use Fewer Bits

74 minutes of CD-quality audio

(16 bits/sample, stereo, 44.1 kHz)

44.1 kHz \times 32 bits \times 60 sec/min \times 74 min \div 8 bits/byte = 783 MB

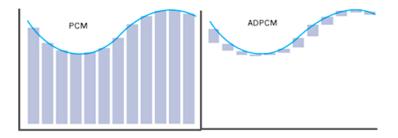

74 minutes of telephone-quality audio:

(8 bits/sample, mono, 8 kHz)

8 kHz \times 8 bits \times 60 sec/min \times 74 min \div 8 bits/byte = 35 MB

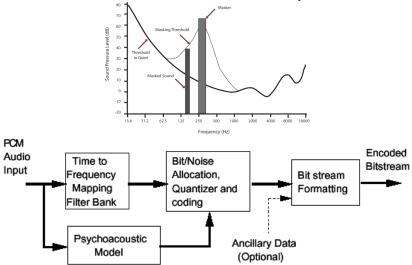
Reducing Memory: Lossy Compression (Companding)

 μ -law and A-law compression Logarithmic encoding of 12 bit samples in 8 bits Trades dynamic range for quantization noise



Source: Ozhiker, Wikimedia commons

ADPCM: Adaptive Predictive Pulse Code Modulation

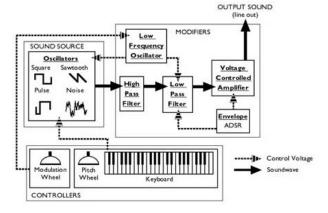

Uses 4 bits/sample to reconstruct 8-bit samples

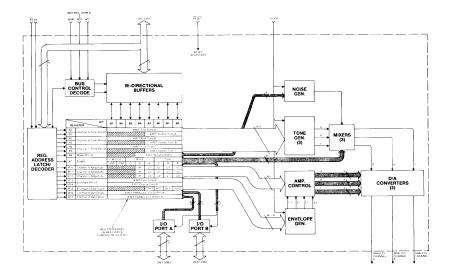
Encodes the *difference* between the next sample and its predicted value

MPEG Layer 3 Compression: Perceptual Coding

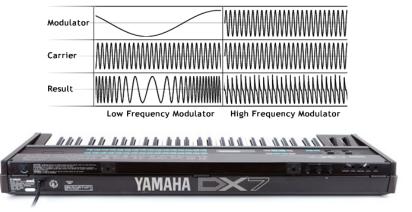
Carefully reproduce what we hear well and worry less about what we can't (soft sounds masked by loud ones)

Sound Synthesis: Analog


Modular analog sound synthesis c. 1968 Oscillators + noise sources + envelope generators + filters


Moog synthesizer

Subtractive Synthesis


Start with a saw, square, or triangle wave, then filter

The AY-3-8912 Programmable Sound Generator

FM Synthesis

What does it sound like? Any pop music from the 1980s

Summary of Audio Waveform Generation

- Direct sampling (Pulse Code Modulation) Consider sampling frequency, bits/sample
- Lossy Compression

Companding (μ -law, A-law)

ADPCM

Perceptual Coding (MP3 et al.)

• Synthesis

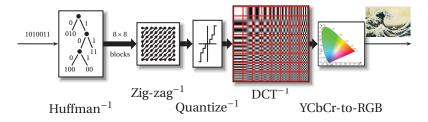
Subtractive (oscillators, filters, envelopes)

FM (Carrier \times modulator, envelopes)

Wavetable/sampling (sound snippets + note events)

Representing Images

Same story; two dimensional waveforms


E.g., a single frame of VGA/standard definition television:

$$640 imes 480 imes 24 rac{bits}{pixel} = 900 \ KB$$

HD is terrifying:

$$1920 imes 1080 imes 24 rac{bits}{pixel} = 5.9 \ MB$$

JPEG: Still Image Compression

- Colorspace conversion
- Space-to-frequency domain conversion
- Quantization
- Zig-zag encoding
- Huffman encoding