6502

Akira Baruah Chaiwen Chou Phil Schiffrin Sean Liu

OUR GOALS

- Initially set out to emulate the NES
- Implement the 6502 in SystemVerilog
- Synthesize the processor onto the FPGA
- Create software to interface with the processor
- Load programs into memory and read output of the processor in a user program

HIGH LEVEL DESIGN

CPU - Contains control signals, registers, and wires

ALU - Computes all arithmetic operations for CPU

Memory - Basic read/write functionality

ORIGINAL BLOCK DIAGRAM

Main changes:

- Single clock
- Control logic: Mealy finite state machine

ARCHITECTURE

Control signals

Combinational/sequential blocks

ADDRESSING MODES

A	••••	Accumulato	or	OPC	A	0
abs	••••	absolute		OPC	\$HHLL	0
abs,X	••••	absolute,	X-indexed	OPC	\$HHLL,X	0
abs,Y	••••	absolute,	Y-indexed	OPC	\$HHLL,Y	0
#	••••	immediate		OPC	#\$BB	0
impl	••••	implied		OPC		0
ind	••••	indirect		OPC	(\$HHLL)	0
X, ind		X-indexed	, indirect	OPC	(\$BB,X)	0
ind,Y	••••	indirect,	Y-indexed	OPC	(\$LL),Y	0
rel		relative		OPC	\$BB	b
zpg	••••	zeropage		OPC	\$LL	0
zpg,X	••••	zeropage,	X-indexed	OPC	\$LL,X	0
zpg,Y	••••	zeropage,	Y-indexed	OPC	\$LL,Y	0

\$HHLL operand is address \$HHLL

- OPC \$HHLL,X operand is address incremented by X with carry
- ed OPC \$HHLL,Y operand is address incremented by Y with carry
 - OPC #\$BB operand is byte (BB)
 - PC operand implied
- ct OPC (\$HHLL) operand is effective address; effective address is value of address
- X-indexed, indirect OPC (\$BB,X) operand is effective zeropage address; effective address is byte (BB) incremented by X without carry
 - indexed OPC (\$LL),Y operand is effective address incremented by Y with carry; effective address is word at zeropage address
 - OPC \$BB branch target is PC + offset (BB), bit 7 signifies negative offset
- zeropage OPC \$LL operand is of address; address hibyte = zero (\$00xx)
 - , X-indexed OPC \$LL,X operand is address incremented by X; address hibyte = zero (\$00xx); no page transition
 - ed OPC \$LL,Y operand is address incremented by Y; address hibyte = zero (\$00xx); no page transition

<u>Tn</u>	Address Bus	Data Bus	<u>R/W</u>	Comments
то	PC	OP CODE	1	Fetch OP CODE
T1	PC + 1	ADL	1	Fetch low order byte of Effective Address
Т2	PC + 2	ADH	1	Fetch high order byte of Effective Address
Т3	ADH, ADL	Data	0	Write internal register to memory
т0	PC + 3	OP CODE	1	Next Instruction

Absolute Addressing (4 cycles)

QUARTUS, QSYS, AND THE SOFTWARE INTERFACE

- Attempted kernel module for interfacing with hardware
- Hacky solution that worked for us: mmap to "/dev/mem"
- Created user-space program that writes into NES memory the contents of a binary file containing instructions for the processor
- 16 bits top 8 bits for our own "opcodes", bottom 8 for data

Feb 21, 2016 - May 12, 2016

Work FLow

Contributions to master, excluding merge commits

Feb 21, 2016 - May 12, 2016

Contributions: Deletions -

Contributions to master, excluding merge commits

Feb 21, 2016 - May 12, 2016

Contributions: Additions -

Contributions to master, excluding merge commits

LESSONS LEARNED

- Time management and planning is key
- Look for help early
- FPGA Board is very delicate
- Testing takes more time than you expect